Hydropneumatic suspension is a type of motor vehicle suspension system, designed by Paul Magès, invented by Citroën, and fitted to Citroën cars, as well as being used under licence by other car manufacturers, notably Rolls-Royce (Silver Shadow), Bmw 5-Series e34 Touring, Maserati (Quattroporte II) and Peugeot. It was also used on Berliet trucks and has been used on Mercedes-Benz cars, where it is known as Active Body Control.[1] The Toyota Soarer UZZ32 «Limited» was fitted with a fully integrated four-wheel steering and a complex, computer-controlled hydraulic Toyota Active Control Suspension in 1991. Similar systems are also widely used on modern tanks and other large military vehicles. The suspension was referred to as fr:Suspension oléopneumatique in early literature, pointing to oil and air as its main components.[2][3]
The purpose of this system is to provide a sensitive, dynamic and high-capacity suspension that offers superior ride quality on a variety of surfaces.[4]
A hydropneumatic system combines the advantages of two technological principles:
- Hydraulic systems use torque multiplication in an easy way, independent of the distance between the input and output, without the need for mechanical gears or levers.
- Pneumatic systems are based on the fact that gas is compressible, so equipment is less subject to shock damage.
- Gas absorbs excessive force, whereas liquid in hydraulics directly transfers force
The suspension system usually features both self-leveling and driver-variable ride height, to provide extra clearance in rough terrain.[5]
The principles illustrated by the successful use of hydropneumatic suspension are now used in a broad range of applications, such as aircraft oleo struts and gas filled automobile shock absorbers, first patented in the U.S. in 1934[6] by Cleveland Pneumatic Tool Co. This type of suspension for automobiles was inspired by the pneumatic suspension used for aircraft landing gear, which was also partly filled with oil for lubrication and to prevent gas leakage, as patented in 1933 by the same company.[7] Other modifications followed, with design changes such as the 1960 «Double stage oleo-pneumatic shock absorber» patented by Peter Fullam John and Stephan Gyurik.[8]
High position
Low position
Challenger 2, main battle tank of the British army, uses hydropneumatic suspension for better crew comfort and increased firing accuracy
Effects[edit]
Hydropneumatic suspension has a number of natural advantages over steel springs, generally recognized in the auto industry.[9]
Suspension and springing technology is not generally well understood by consumers, leading to a public perception that hydropneumatics are merely «good for comfort». They also have advantages related to handling and control efficiency, solving a number of problems inherent in steel springs that suspension designers have previously struggled to eliminate.[10]
Although auto manufacturers understood the inherent advantages over steel springs, there were two problems. First, it was patented by the inventor, and second it had a perceived element of complexity, so automakers like Mercedes-Benz, British Leyland (Hydrolastic, Hydragas), and Lincoln sought to create simpler variants using a compressed air suspension.[11][12]
Citroën’s application of the system had the disadvantage that only garages equipped with special tools and knowledge were qualified to work on the cars, making them radically different from ordinary cars with common mechanicals.[13]
France was noted for the poor quality of its roads after World War II, but the hydropneumatic suspension as fitted to the Citroën ID/DS and later cars reportedly ensured a smooth and stable ride there.[4][14][15]
Hydropneumatic suspension offers no natural roll stiffness. There have been many improvements to the system over the years, including steel anti-roll bars, variable ride firmness (Hydractive), and active control of body roll (Citroën Activa).[16]
Basic mechanical layout[edit]
This system uses a belt or camshaft driven pump from the engine to pressurise a special hydraulic fluid, which then powers the brakes, suspension and power steering.[10][17] It can also power any number of features such as the clutch, turning headlamps and even power windows.[10]
Nitrogen is used as the trapped gas to be compressed, since it is unlikely to cause corrosion. The actuation of the nitrogen spring reservoir is performed through an incompressible hydraulic fluid inside a suspension cylinder.[4] By adjusting the filled fluid volume within the cylinder, a leveling functionality is implemented.[4] The nitrogen gas within the suspension sphere is separated from the hydraulic oil by a rubber membrane.[4]
History[edit]
Citroën first introduced this system in 1954 on the rear suspension of the Traction Avant.[18] The first four-wheel implementation was in the advanced DS in 1955.[19] Major milestones of the hydropneumatics design were:
- During World War II, Paul Magès, an employee of Citroën, with no formal training in engineering, secretly develops the concept of an oil and air suspension to combine a new level of softness with vehicle control and self-levelling.[20]
- 1954 Traction Avant 15H: Rear suspension, using LHS hydraulic fluid.
- 1955 Citroën DS: Suspension, power steering, brakes and gearbox/clutch assembly powered by high pressure hydraulic assistance. A belt driven 7-piston pump, similar in size to a power steering pump, generates this pressure when the engine is running.[21]
- 1960 The United States Patent and Trademark Office issues A U.S. Patent 2959410 A for a Double stage oleo-pneumatic shock absorber using concepts very similar to those developed earlier by Paul Magès — Patent forms the basis for aircraft oleo struts and gas-filled shock absorbers[8]
- 1965 Rolls-Royce licenses Citroën technology for the suspension of the new Silver Shadow[22]
- 1967 The superior non-hygroscopic LHM mineral fluid is introduced
- 1969 Citroën M35: The Citroën M35 was a coupé derived from the Ami 8, and equipped with a Wankel engine and a hydropneumatic suspension. The bodies were produced by Heuliez from 1969 to 1971.
- 1969 National Highway Traffic Safety Administration legalizes LHM mineral fluid in the United States
- 1970 Citroën GS: Adaptation of the hydropneumatic suspension to a small car
- 1970 Citroën SM: Variable speed auto-returning power steering, dubbed DIRAVI, and hydraulically actuated directional high beams. The beams of all six headlights are maintained parallel to the road surface by a hydraulic system separate from the directional long range high beams. The headlights’ steering and leveling systems are totally separate from the central system that powers the suspension, steering and brakes and use a different fluid, a glycerine type.
- 1972 BMW E12 5-series released with optional hydropneumatic rear suspension. Coil springs are retained, though softer than conventional coils for the same car. This system was offered in most BMW 5-, 6-, and 7-series models, as well as the E30 Touring (station wagon/estate), into the 1990s when it was replaced with an air suspension. Until late 1987, the hydraulic circuit was separate from the power steering, and the pump electrically-powered.
- 1974 National Highway Traffic Safety Administration bans vehicles with height adjustable suspension, impacting consumers in the United States. Ban repealed 1981.
- 1974 Citroën CX: The car was one of the most modern of its time, combining Citroën’s unique hydro-pneumatic integral self-leveling suspension and speed-adjustable DIRAVI power steering (first introduced on the Citroën SM). The suspension was attached to sub frames that were fitted to the body through flexible mountings, to improve even more the ride quality and to reduce road noise. The British magazine Car described the sensation of driving a CX as hovering over road irregularities, much like a ship traversing above the ocean floor.
- 1974 Maserati Quattroporte II: was on an extended Citroën SM chassis, available since Citroën had purchased the Italian company and was the only Maserati Quattroporte to feature hydropneumatic suspension and front-wheel drive
- 1975 The Mercedes-Benz 450SEL 6.9 W116 replaces the air suspension of the 6.3 with hydropneumatic suspension, with the pump driven by the engine’s timing chain instead of an external belt. This adaptation was used only for the suspension. Power steering and brakes were conventional hydraulic- and vacuum-powered, respectively.
- 1980 Mercedes-Benz W126 500SEL used hydropneumatic suspension as optional, later this system was available on 420SEL and 560SEL models.
- 1983 Citroën BX, built as a 4WD in 1990[23]
- 1984 Mercedes-Benz W124 selected models of E class had this technology (rear only hydraulic suspension) height adjustable suspension and self-levelling suspension mixed with coil springs.
- 1987 BMW E30 3-series Touring (station wagon/estate) begins production in July, offering the same self-leveling hydropneumatic rear suspension as previous BMW, with the difference that the pump is a parallel circuit on the belt-driven steering assist pump, and shares its fluid. Starting in September, the E32 7-series (in production since June ’86) switches to this pump from the previous electric pump. The BMW E34 5-series begins production in November, also with this new pump.
- 1989 Citroën XM: Hydractive Suspension, electronic regulation of the hydropneumatic system; sensors measure acceleration and other factors [24]
- 1990 Peugeot 405 Mi16x4: first Peugeot equipped with rear hydropneumatic suspension[citation needed]
- 1990 JCB Fastrac high speed agricultural tractor uses this system for its rear suspension.[citation needed]
- 1991 Toyota Soarer UZZ32 used hydraulic struts controlled by an array of sensors with yaw velocity sensors, vertical G sensors, height sensors, wheel speed sensors, longitudinal and lateral G sensors) that detected cornering, acceleration and braking force.
- 1993 Citroën Xantia used hydropneumatic, on 1995 Optional Activa (active suspension) system, eliminating body roll by acting on anti-roll bars.[24] A Xantia Activa was able to reach more than 1g lateral acceleration, and still holds the record speed (85 km/h (53 mph)) through the moose test maneuver, due to its active anti-roll bars.[25] This test is conducted by the magazine Teknikens Värld’s, as a test of avoiding a moose in the road. The second place car, Porsche 997 GT3 RS was able to manage 82 km/h (51 mph).[26][24]
- 1995 Mercedes-Benz E-Class (W210) on estate (wagon) models on rear suspension used hydraulic suspension with spheres height adjustable suspension and self-levelling suspension mixed with coil springs.
- 1999 Mercedes-Benz CL-Class (C215) and Mercedes-Benz S-Class (W220) introduce optional Active Body Control — an electronically controlled hydropneumatic system [27]
- 2001 Citroën C5: Hydractive 3 removes the need for central hydraulic pressure generation; combined pump/sphere unit for the suspension only and with electric height adjustment sensors. Hydractive 3+ was available on some models[citation needed]
- 2005 Citroën C6: An improved version of the C5 system known as Hydractive 3+ (also fitted to some C5 models), C6 with a V6 engine was fitted with AMVAR version of Hydractive 3+ (sometimes called Hydractive 4)[citation needed]
- 2007 Citroën C5 II: Hydractive 3+ as optional on Exclusive models. other versions of the car have normal spring suspension.
- 2008 JCB Fastrac high speed 7000 series agricultural tractors now use this system for front and rear suspension.[citation needed]
- 2019 Mercedes-Benz 450 GLE introduces eActive Body Control on a Sport utility vehicle, discarding mechanical roll bars, notably enhancing performance.[28]
- 2023 BYD Auto introduces advanced active hydropneumatic suspension systems on the Yangwang U8 SUV and U9 sportscar. The suspension features the ability to drive with only three wheels fitted, and jump in the air while parked remaining level.[29]
Functioning[edit]
At the heart of the system, acting as pressure sink as well as suspension elements, are the so-called spheres, five or six in all; one per wheel and one main accumulator as well as a dedicated brake accumulator on some models. On later cars fitted with Hydractive or Activa suspension, there may be as many as ten spheres. Spheres consist of a hollow metal ball, open to the bottom, with a flexible Desmopan rubber membrane, fixed at the ‘equator’ inside, separating top and bottom. The top is filled with nitrogen at high pressure, up to 75 bar, the bottom connects to the car’s hydraulic fluid circuit. The high pressure pump, powered by the engine, pressurizes the hydraulic fluid (LHM – liquide hydraulique minéral) and an accumulator sphere maintains a reserve of hydraulic power. This part of the circuit is at between 150 and 180 bars. It powers the front brakes first, prioritised via a security valve, and depending on type of vehicle, can power the steering, clutch, gear selector, etc.
Pressure flows from the hydraulic circuit to the suspension cylinders, pressurizing the bottom part of the spheres and suspension cylinders. Suspension works by means of a piston forcing LHM into the sphere, compressing the nitrogen in the upper part of the sphere; damping is provided by a two-way ‘leaf valve’ in the opening of the sphere. LHM has to squeeze back and forth through this valve which causes resistance and controls the suspension movements. It is the simplest damper and one of the most efficient. Ride height correction (self leveling) is achieved by height corrector valves connected to the anti-roll bar, front and rear. When the car is too low, the height corrector valve opens to allow more fluid into the suspension cylinder (e.g., the car is loaded). When the car is too high (e.g. after unloading) fluid is returned to the system reservoir via low-pressure return lines. Height correctors act with some delay in order not to correct regular suspension movements. The rear brakes are powered from the rear suspension circuit. Because the pressure there is proportional to the load, so is the braking power.
Working fluid[edit]
Citroën quickly realized that standard brake fluid was not ideally suited to high pressure hydraulics, and developed a special red-coloured hydraulic fluid named LHS (Liquide Hydraulique Synthétique), which they used from 1954 to 1967. The chief problem with LHS was that it absorbed moisture and dust from the air, which caused corrosion in the system. Most hydraulic brake systems are sealed from the outside air by a rubber diaphragm in the reservoir filler cap, but the Citroën system had to be vented to allow the fluid level in the reservoir to rise and fall, thus it was not hermetically sealed. Consequently, each time the suspension would rise, the fluid level in the reservoir dropped, drawing in fresh moisture-laden air. The large surface of the fluid in the reservoir readily absorbed moisture. Since the system recirculates fluid continually through the reservoir, all the fluid was repeatedly exposed to the air and its moisture content.
To overcome these shortcomings of LHS, Citroën developed a new green fluid, LHM (Liquide Hydraulique Minéral). LHM is a mineral oil, quite close to automatic transmission fluid. Mineral oil is hydrophobic, unlike standard brake fluid; therefore, water-vapour bubbles do not form in the system, as would be the case with standard brake fluid, creating a «spongy» brake feel. Use of mineral oil has thus spread beyond Citroën, Rolls-Royce, Peugeot, and Mercedes-Benz, to include Jaguar, Audi, and BMW.[30]
LHM, being a mineral oil, absorbs only an infinitesimal proportion of moisture, plus it contains corrosion inhibitors. The dust inhalation problem continued, so a filter assembly was fitted into the hydraulic reservoir. Cleaning the filters and changing the fluid at the recommended intervals removes most dust and wear particles from the system, ensuring the longevity of the system. Failure to keep the oil clean is the main cause of problems. It is also imperative to always use the correct fluid for the system; the two types of fluids and their associated system components are not interchangeable. If the wrong type of fluid is used, the system must be drained and rinsed with Hydraflush (Total’s Hydraurincage), before draining again and filling with the correct fluid. These procedures are clearly described in DIY manuals obtainable from automotive retailers.
The latest Citroën cars with Hydractive 3 suspension have a new orange coloured LDS hydraulic fluid. This lasts longer and requires less frequent attention. It conforms to DIN 51524-3 for HVLP.[31]
Manufacturing[edit]
The whole high pressure part of the system is manufactured from steel tubing of small diameter, connected to valve control units by Lockheed type pipe unions with special seals made from Desmopan, a type of polyurethane thermoplastic compatible with the LHM fluid. The moving parts of the system, e.g., suspension strut or steering ram, are sealed by contact seals between the cylinder and piston for tightness under pressure. The other plastic/rubber parts are return tubes from valves such as the brake control or height corrector valves, also catching seeping fluid around the suspension push-rods. Height corrector, brake master valve and steering valve spools, and hydraulic pump pistons have extremely small clearances (1–3 micrometres) within their cylinders, permitting only a very low leakage rate. The metal and alloy parts of the system rarely fail, even after excessively high mileages, but the elastomer components (especially those exposed to the air) can harden and leak, typical failure points for the system.
Spheres are not subject to mechanical wear, but suffer pressure loss, due to the pressurised nitrogen diffusing through the membrane. They can, however, be recharged, which is cheaper than replacing them. When Citroën designed their Hydractive 3 suspension they redesigned the spheres with new nylon membranes, which greatly slow the rate of deflation. These are recognisable by their grey colouring.
Classic (non-saucer) green- (and grey-) coloured suspension spheres typically last between 60,000 and 100,000 km. Spheres originally had a threaded plug on top for recharging. Newer (‘saucer’) spheres do not have this plug, but it can be retrofitted, enabling them to be recharged with gas. The sphere membrane has an indefinite life unless run at low pressure, which leads to rupture. Timely recharging, approximately every 3 years, is thus vital. A ruptured membrane means suspension loss at the attached wheel; however, ride height is unaffected. With no springing other than the (slight) flexibility of tyres, hitting a pothole with a flat sphere can bend the suspension parts or dent a wheel rim. In the case of main accumulator sphere failure, the high pressure pump is the only source of braking pressure for the front wheels. Some older cars had a separate front brake accumulator on power steering models.
The old LHS and LHS2 (coloured red) cars used a different elastomer in the diaphragms and seals that is not compatible with green LHM. The orange LDS fluid in Hydractive cars is also incompatible with other fluids.
Hydractive[edit]
Hydractive Suspension is an automotive technology introduced by Citroën in 1990. The prototype debuted in 1988 on the Citroën Activa concept. It describes a development of the 1954 hydropneumatic suspension design using additional electronic sensors and driver control of suspension performance. The driver can make the suspension stiffen (sport mode) or ride in outstanding comfort (soft mode). Sensors in the steering, brakes, suspension, throttle pedal and gearbox feed information on the car’s speed, acceleration, and road conditions to an on-board computer, which in turn activates or deactivates an extra pair of suspension spheres on the circuit, to enable either a more smooth supple ride or tighter handling in corners. On the Activa and Activa 2, the car leaned inwards by one degree in turns — Citroën acknowledged that this was somewhat of a marketing gimmick, and that a lean of zero degrees was optimal.[32]
An additional, perhaps unexpected, benefit of active suspension is that fuel consumption and tire wear is lowered overall. The negative camber designed into most suspensions in order to maximize the size of the contact patch when turning leads to tire scrub, which wears out tires and increases fuel consumption.[32]
Hydractive 1 and Hydractive 2[edit]
Citroën Hydractive (and later Hydractive 2) suspension was available on several models, including the XM and Xantia, which had a more advanced sub-model known as the Activa. The first Hydractive suspension systems (now known as Hydractive 1) had two user presets, Sport and Auto. In the Sport setting the car’s suspension was always kept in its firmest mode. In the Auto setting, the suspension was switched from soft to firm mode temporarily when a speed-dependent threshold in accelerator pedal movement, brake pressure, steering wheel angle, or body movement was detected by one of several sensors.[24]
In Hydractive 2, the preset names were changed to Sport and Normal. In this new version the Sport setting would no longer keep the suspension system in firm mode, but instead lowered the thresholds significantly for any of the sensor readings also used in Normal mode, allowing for a similar level of body firmness during cornering and acceleration, without the sacrifice in ride quality the Sport mode in Hydractive 1 systems had caused.
Whenever the Hydractive 1 or 2 computers received abnormal sensor information, often caused by malfunctioning electrical contacts, the car’s suspension system would be forced into its firm setting for the remainder of the ride.
Starting with Xantia model year 1994 and XM model year 1995, all models featured an additional sphere and valve that together functioned as a pressure reservoir for rear brakes because of new hydraulic locks, letting the car retain normal ride height for several weeks without running the engine. Correctly called the SC/MAC sphere, it often became known as the ‘anti-sink’ sphere, because of its ability to better maintain rear suspension height.
Hydractive 3[edit]
The 2001 Citroën C5 has continued development of Hydractive suspension with Hydractive 3. Compared to earlier cars, the C5 stays at normal ride height even when the engine is turned off for an extended period, through the use of electronics. The C5 also uses orange synthetic hydraulic fluid named LDS fluid in place of the green LHM mineral oil used in millions of hydropneumatic vehicles.[31]
A further improved Hydractive 3+ variation was for cars with top engines on the Citroën C5 and in 2005 was standard on the Citroën C6. Hydractive 3+ systems contain additional spheres that can be engaged and disengaged via a Sport button, resulting in a firmer ride.
The Hydractive 3 hydraulic suspension has 2 automatic modes:
- Motorway position (lowering by 15 mm of the vehicle height above 110 km/h)
- Poor road surface position (raising by 13 mm of the vehicle height below 70 km/h)
The BHI of the Hydractive 3 suspension calculates the optimum vehicle height, using the following information:
- Vehicle speed
- Front and rear vehicle heights
The 3+ Hydractive hydraulic suspension has 3 automatic modes:
- Motorway position (lowering by 15 mm of the vehicle height above 110 km/h)
- Poor road surface position (raising by 13 mm of the vehicle height below 70 km/h)
- Comfort or dynamic suspension (variation of suspension firmness)
The BHI of the 3+ Hydractive suspension calculates the optimum vehicle height, using the following information:
- Vehicle speed
- Front and rear vehicle heights
- Rotation speed of steering wheel
- Angle of rake of steering wheel
- Vehicle’s longitudinal acceleration
- Vehicle’s lateral acceleration
- Speed of suspension travel
- Movement of the accelerator throttle
C5 I (2001–2004)
- Hydractive hydraulic suspension 3: EW7J4 and DW10TD engines.
- Hydractive hydraulic suspension 3+: EW10J4, EW10D, ES9J4S and DW12TED4 engines.
C5 II (2004–2007)
- Hydractive hydraulic suspension 3: EW7J4, EW10A, DV6TED4 and DW10BTED4 engines.
- Hydractive hydraulic suspension 3+: ES9A and DW12TED4 engines (prior to RPO No 10645).
C6 (2005–2012)
- Hydractive hydraulic suspension 3+: Standard on all models.
C5 III X7 (2007–2017)
- Hydractive hydraulic suspension 3+: Depends on country and trim.
See also[edit]
- Hydrolastic — a type of automotive suspension system used in many cars produced by British Leyland and its successor companies.
- Hydragas — is an improved form of Hydrolastic, using nitrogen-pressurised gas springs, rather than rubber.
- Hydraulic recoil mechanism — uses the same principal for artillery.
- Oleo strut — suspension for most large aircraft, using the same physical properties of air and hydraulic fluid.
- Active Body Control — ABC, is the Mercedes-Benz brand name used to describe hydropneumatic fully active suspension, that allows control of the vehicle body motions and therefore virtually eliminates body roll in many driving situations including cornering, accelerating, and braking.
- Air suspension — a type of vehicle suspension powered by an electric or engine-driven air pump or compressor. This compressor pumps the air into a flexible bellows, usually made from textile-reinforced rubber. The air pressure inflates the bellows, and raises the chassis from the axle.
- Electronic Air Suspension (EAS) is the air suspension system installed on the second version of the Range Rover. Five suspension heights are offered by this system.
References[edit]
- ^ Heißing, Bernd; Ersoy, Metin, eds. (2008). Fahrwerkhandbuch: Grundlagen, Fahrdynamik, Komponenten, Systeme, Mechatronik, Perspektiven. Wiesbaden: Vieweg+Teubner Verlag. doi:10.1007/978-3-8348-9493-9. ISBN 978-3-8348-0444-0. Retrieved 3 January 2023.
- ^ «La suspension hydropneumatique du début à la fin chez Citroën». Le blog (in French). Air-Techniques.fr. Retrieved 3 January 2023.
- ^ Richard, Denis; Perineau, Jean (4 June 1986). «Suspension oléopneumatique à amortissement total». google patents (in French). Retrieved 3 January 2023.
- ^ a b c d e Reynolds, John (2004). Citroen: Daring to Be Different. Haynes Publishing. p. 75. ISBN 978-1-85960-896-8.
- ^ «Porsche? Releases Cayenne? Four-Wheel Drive Technical Specifications and New Photos». Archived from the original on 2015-02-06. Retrieved 2015-01-29.
- ^ «Hydropneumatic shock absorber US 1967641 A».
- ^ «Shock absorbing device US 1918697 A».
- ^ a b «Double stage oleo-pneumatic shock absorber». google.com.
- ^ Gardiner, Nick; Griesbach, Doug; McCann, Connor; McDonald, Nick (April 26, 2012). «Project report: Ambulance Universal Chassis and Suspension» (PDF). Worcester Polytechnic Institute. Archived from the original on January 29, 2015. Retrieved January 3, 2023.
We designed a bolt-on kit for aftermarket installation of hydropneumatic suspension into current ambulances using our 2004 Ford F-350 ambulance as a template.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) - ^ a b c «Suspension Basics 9 — Hydropneumatic Springs». InitialDave. Archived from the original on 2015-01-29. Retrieved 2015-01-29.
- ^ «Data» (PDF). www.hydragas.co.uk. Archived from the original (PDF) on 2014-05-31. Retrieved 2015-01-29.
- ^ «Suspension Basics 8 — Air Springs». InitialDave. Archived from the original on 2015-01-29. Retrieved 2015-01-29.
- ^ «1971 Citröen DS». nbc.com. 12 January 2015.
- ^ «The All-New Range Rover | Unmatched Capability « Land Rover » www.landrovermena.com». Archived from the original on 2015-01-29. Retrieved 2015-01-29.
- ^ «Lexus LX 470 suspension system». activesuspensionsystems.com. Archived from the original on 2015-01-29. Retrieved 2015-01-29.
- ^ Popular Science. Bonnier Corporation. 1991. p. 29. Retrieved 12 June 2018.
- ^ «citroen guide» (PDF). tramontana.co.hu. Archived from the original (PDF) on 2004-02-05. Retrieved 3 January 2023.
- ^ REINE, Les RENDEZ-VOUS de La. «TRACTION AVANT 15cv, 6 cylindres, suspension hydraulique ! LA REINE DE LA ROUTE — LES RENDEZ VOUS DE LA REINE». lesrendezvousdelareine.com.
- ^ «1955 Citroën DS 19 — Citroën». SuperCars.net. 31 March 2016.
- ^ «Citroën Faces – The men behind Citroën». The Citroën Source. Archived from the original on 2009-08-03. Retrieved 2014-04-01.
Magès was the man behind the hydropneumatic suspension of the DS. His ideas were discovered by Pierre Boulanger by accident, and Boulanger was fascinated by them, even though the Citroën technicians considered them hopeless. Boulanger employed Magès in the development department. A decision, he never would regret. Paul Magès was a curious man, and he consumed all literature concerning wheel suspension, suspension in general and braking systems.
- ^ «Hydraulics info» (PDF). www.mycitroen.dk/library.
- ^ «Project Car Hell, Roller On a Budget Edition: Silver Cloud or Silver Shadow?». autoweek.com. 15 December 2011.
- ^ «CITROEN bx GTI 4X4». Motor Sport Magazine. Retrieved 2022-11-29.
- ^ a b c d «Citroën XM technical specification». Citroenet.org.uk. 2000-06-10. Retrieved 2018-06-29.
- ^ «Moose tests, ranked». G/O Media Inc. 24 January 2015. Archived from the original on 4 August 2020. Retrieved 27 August 2020.
- ^ «The humble champion». 29 November 2016. Archived from the original on 17 November 2021. Retrieved 17 November 2021.
- ^ «Mercedes-Benz S-Class (W220: 1998-2005)». 18 September 2018. Retrieved 16 November 2021.
- ^ CHRIS PERKINS (23 September 2018). «The 2019 Mercedes-Benz GLE 450 Has an Incredible Adaptive Suspension System — The new Mercedes SUV can lean into corners and adjust each wheel’s suspension tuning individually and on the fly». Road & Track. Retrieved 16 November 2021.
- ^ «BYD Reveals DiSus Intelligent Body Control System, Exclusively for New Energy Vehicles». AFP.com. Retrieved 2023-04-14.
- ^ Jackson, Tony; Bardenwerper, Mark L. (March 2016). «Revised Summary of Citroën Hydraulic Fluids». citroen.cappyfabrics.com. Archived from the original on 2020-02-15. Retrieved 2020-04-29.
- ^ a b «LDS Fluid data sheet» (PDF). lubadmin.com. Archived from the original (PDF) on 2014-08-04. Retrieved 2014-10-20.
- ^ a b Collin, Robert (1991-02-07). «Citroën fjädrar sig igen» [Citroën springs back up]. Teknikens Värld (in Swedish). Vol. 43, no. 2. Stockholm, Sweden: Specialtidningsförlaget AB. p. 44.
External links[edit]
- The Citroën Technical Guide
Гидравлическая подвеска – вид подвески, обеспечивающий регулирование уровня кузова относительно дороги за счет применения гидравлических упругих элементов.
В гидроподвеске вместо амортизаторов используются гидростойки или гидроподъемники с очень большим рабочим ходом. На верхний конец каждой стойки навинчиваются особые шары или гидросферы, которые выполняют роль пружин, их ещё называют «були». Устроены они предельно просто: полость внутри сферы разделена на две части упругой мембраной, с одной стороны сфера заполненна азотом (давление от 35 до 60 атмосфер), а с другой стороны мембрану подпирает специальное масло (LHM или LHM+ для DS, CX, GS, BX, XM, Xantia, для Citroen C5, C6 применяется LDS — оранжевого цвета) едко-зеленого цвета.
Как известно при нагрузке дорожный просвет у автомобиля уменьшается. Чтобы избежать этого могут применяться системы саморегулирования задней подвески. На рисунке приведена компоновка гидравлической подвески с автоматической регулировкой постоянства уровня кузова легкового автомобиля.
Компоновка подвески с автоматической регулировкой постоянства уровня кузова легкового автомобиля
Рис. Компоновка подвески с автоматической регулировкой постоянства уровня кузова легкового автомобиля:
1 – двухступенчатый насос для обеспечения работы гидроусилителя рулевого управления и регулировки постоянства уровня кузова; 2 – блок управления; 3 – накопители (гидравлические аккумуляторы); 4 – регулятор тормозного усилия; 5 – бачок для рабочей жидкости
В автомобилях с саморегулированием задней подвески предусмотрен специальный бачок 5 с рабочей жидкостью, которая может подаваться в задние амортизаторы. Эта жидкость выполняет вспомогательную функцию для облегчения действия цилиндрических пружин при перевозке тяжелых грузов. Жидкость подается в накопители 3 гидравлическим насосом 1. Система управляется специальным блоком 2, установленным на днище автомобиля. Блок связан с задним стабилизатором поперечной устойчивости и по положению стабилизатора определяет загрузку автомобиля.
Принцип работы системы показан на рисунке.
Рис. Принцип работы системы с гидравлической подвеской:
1 – насос; 2 – поршень приводного механизма; 3 – клапан; 4 – перепускной клапан; 5 – жиклер; 6 – правый кулачок; 7,10 – шарик; 8 – предохранительный клапан; 9 – левый кулачок; 11 – бачок; 12 – пружина; 13 – тяга; a – нейтральное положение кузова; b – верхнее положение кузова; c – нижнее положение кузова
При работающем двигателе, гидравлический насос подает жидкость к блоку управления. В зависимости от загрузки салона автомобиля вал, на котором установлены два кулачка 6 и 9, может поворачиваться. Поворот вала зависит от положения тяги 13, связанной в свою очередь с задним стабилизатором кузова.
Если автомобиль не нагружен, кулачок 9 поворачиваясь, воздействует на шарик 10 и тот открывает клапан 3. Жидкость при этом возвращается из амортизатора в бачок. В этом положении задняя подвеска поддерживается только цилиндрическими пружинами.
Как только автомобиль загружается выше определенной нормы, в работу вступает кулачок 6, который толкает поршень приводного механизма 2 в верхнее положение с помощью шарика и перекрывает обратную магистраль. Жидкость из накопителей и насоса подается через перепускной клапан 4 в резервуары амортизаторов. Давление в резервуарах амортизатора заставляет амортизаторы слегка удлиниться, приподнимая заднюю часть автомобиля. Как только задняя часть автомобиля поднимется на нужную высоту, предохранительный клапан 8 вернет жидкость в накопитель или бачок.
При постоянном положении кузова в среднем положении амортизаторы, соединенные с клапаном 3, изолированы от жидкостной системы и происходит перекачка жидкости из бачка (накопителей) в насос и снова в бачок.
Таким образом, блок управления уровнем поддерживает высоту задней части автомобиля на одном уровне, независимо от груза.
Накопители оборудованы наполненной газом камерой, которая отделена от жидкости резиновой диафрагмой. Эта камера позволяет амортизаторам функционировать правильно, даже при наполненных накопителях. При толчке амортизатор сжимается и жидкость выталкивается в накопитель, деформируя его диафрагму. Когда амортизатор удлиняется, жидкость под давлением диафрагмы возвращается из накопителя в амортизатор.
Высота дорожного просвета автомобиля изменяется путем переключения установленного в салоне автомобиля рычага управления. Рычаг посредством исполнительных штоков соединен с корректорами высоты подвески. На моделях ранних лет выпуска при выключении двигателя автомобиль опускается в нижнее положение. Более поздние модели оборудованы односторонним клапаном, изолирующим подвеску от главной гидравлической системы, что позволяет избежать подобного опускания кузова после останова двигателя.
Основную функцию гидропневматической системы выполняют сферы. Находятся под управлением компьютера. Состоит из трех основных частей: встроенный гидроэлектронный интерфейс (BHI), сферы, датчики считывания.
Водителей нередко интересует не только установка гидро подвески автомобиля. Истинных ценителей увлекает историческая сторона вопроса. В статье описан процесс возникновения этого элемента, а также рассмотрен принцип функционирования устройства.
Как появилась подвеска типа Hydractive
Модификация гидро подвески автомобиля, собственной разработки Сitroen 1954-го года. Впервые установлена на моделях XM и Xantia, а представлена в 1990 г. В оригинальной Hydractive было два режима — «спорт» и «авто». Принцип работы в автоматическом переключении — устанавливают по мере необходимости для увеличения управляемости.
Hydractive 2 поставляли на 2 поколение XM и на Xantia. «Спорт» сохраняет автомобиль в мягком режиме, переключая на жесткую езду. Переход также имел два положения.
подвеска типа Hydractive
С выпуском Citroen C5 появилась третья интерпретация устройства с новой функцией — автоматической регулировкой дорожного просвета.
Hydractive 3+ стояла на Citroen C5 последующих ревизий и C6. В модели C5 подвеска гидропневматическая, а управление и тормоз переведены на обычный вариант. Режим «спорт» для жесткой езды вернулся. В подвеске используют новую жидкость, виды сфер и электрический насос, нагнетающий давление в системе сразу после разблокировки автомобиля. Hydractive 3 и 3+ ушли вместе с моделью Citroen C5 и С6. Hydractive 4 так и не стала реальностью.
Элементы, узлы и механизмы
Основную функцию гидропневматической системы выполняют сферы. Находятся под управлением компьютера. Состоит из трех основных частей: встроенный гидроэлектронный интерфейс (BHI), сферы, датчики считывания.
Основную функцию гидропневматической системы выполняют сферы
Элементы:
- пятипоршневый гидравлический насос — работает от электродвигателя, контролирует давление;
- гидроаккумулятор, 4 четыре электроклапана, 2 гидравлических клапана — обеспечивают регулировку высоты и противозадирную способность, сюда также входит клапан регуляции давления всех описанных систем;
- компьютер — считывает датчики, управляет пятипоршневым гидравлическим насосом высокого давления и электроклапанами.
Второй важный компонент гидропневматической системы — сферы, представляющие собой металлическую полость с мембраной внутри, что делит внутренний объем пополам. Верхняя часть заполняется азотом, в нижнюю поступает гидравлическая жидкость.
Принцип работы
Подвеска функционирует через поршень, воздействующий на жидкость в сфере, сжимая азот в верхней части. Газ возвращает свой объем, гашение обеспечивает створчатый клапан в отверстии сферы. Вещество проходит через деталь, что вызывает сопротивление и контролирует движения подвески.
Принцип работы
Если жидкость не поступает, то гашение не происходит: машина едет жестко. Компьютер решает, подавать вещество или нет, на основании анализа пяти различных индикаторов:
- угла и скорости вращения руля;
- скорости движения;
- работы акселератора;
- тормозного усилия;
- движений тела.
Данные помогают компьютеру изменять принцип хода в режиме реального времени автоматически.
Преимущества и недостатки
Достоинства системы таковы:
- Дорожный просвет остается постоянным при любых изменениях нагрузки.
- Автомобиль сохраняет контакт с дорогой: никакого крена, что особенно важно для большегрузов. На многих транспортных средствах GINAF стоит именно гидропневматика, хотя это скорее исключение из правила.
- Нет необходимости в стабилизаторе поперечной устойчивости в машине.
- Подвеска не требует обслуживания до 5 лет.
- Повышена динамическая устойчивость за счет снижения дорожного просвета, когда скорость более 110 км /ч.
- Хорошая управляемость и комфортная езда за счет адаптации к условиям дороги.
Несмотря на достоинства устройства, специалисты говорят и о наличии определенных проблем.
Достоинства системы
Недостатки:
- неисправность датчика может вызвать некорректное переключение режимов езды;
- при замене шин следует соблюдать особые меры предосторожности;
- дороже по сравнению с обычной подвеской;
- только гаражи, оборудованные специальными инструментами, и квалифицированный специалист могут отремонтировать гидропневматическую систему.
- конструкция подвески сложная, дорога в производстве.
Видно, что многие недостатки скорее экономические: одна из причин, почему технология гидропневматической системы ушла на покой вместе с последним C5.
Как правильно использовать
Есть два режима: мягкий и жесткий. Выключение сфер из цепи усиливает гидроподвеску, делая езду более норовистой. Базовая настройка машины будет мягкой, после включения режима normal. Компьютер сам перейдет в жесткое положение и обратно, когда того потребуют условия. Клиренс задает система автоматически, но может быть изменена вручную.
Цена ремонта
В случае с Citroen C5 замена переднего гидроамортизатора начинается от 1.5 тыс. руб. Установка нового гидроэлектронного блока (BHI) стартует от 2.5 тыс. руб., а сам элемент стоит в районе 100 евро, и купить его непросто.
Передний регулятор жесткости обойдется от 4.5 тыс. руб., задний — 1.5 тыс. руб. Сферы меняют от 800 руб., сами же детали стоят от 3 тыс. руб. и выше.
Цены для Mercedes или большегрузов будут ощутимее. Детали для машины недешевые, а разобрать гидропневматическую подвеску самому сложнее, чем в пружинную. Помимо этого, не в каждом СТО смогут качественно починить деталь. В случае с Citroen рекомендуется уточнить у сотрудников наличие специального диагностического сканера, а также узнать об оригинальных запчастях.
Гидравлическая подвеска
Гидравлическая подвеска – вид подвески, обеспечивающий регулирование уровня кузова относительно дороги за счет применения гидравлических упругих элементов
Впервые гидравлическая подвеска появилась в 1955 году на авто марки «Citroen». На тот момент она имела разумное конструктивное значение, сейчас же гидроподвеска считается очень дорогим удовольствием при тюнинговке автомобиля.
От обычной гидроподвеска отличается конструкцией амортизаторов (используются так называемые конические трубы). Как и амортизаторы трубы заполнены маслом, но наверху каждой трубы установлено по 4 сферообразных гидроаккумулятора. Внутренняя полость сферы разделена мягкой мембраной на 2 части: одна заполнена специальным гидравлическим маслом (это масло из-за своеобразного зеленого цвета получило название «зелёнка»), вторая — азотом.
Масло в этой системе является силовым элементом, передавая давление с колес на мембрану. С мембраны давление передаётся на газ. Газ в свою очередь выполняет функцию пружины, которая под давлением сжимается, тем самым гасит колебания колес и предотвращает раскачку кузова. Основными преимуществами гидравлической подвески являются плавность хода автомобиля и комфортное движение. Конструкция максимально оптимизирована, что позволяет плавно регулировать высоту гидроподвески, не зависимо от скорости движения, степени загруженности машины, поверхности дороги.
Но у гидроподвески есть и свои минусы: масло, используемое в системе, параллельно применяется и в гидроусилителе руля и в тормозной системе, что означает, что при возможной утечке из строя выйдут все три системы одновременно.
Гидравлическая подвеска чрезвычайно дорога и технически сложна, именно поэтому на данный момент она не пользуется большим спросом среди обычных автомобилистов, однако среди любителей она является отличным дополнением для авто, своеобразный элемент роскоши.
В конструкции гидропневматической подвески отсутствуют такие привычные упругие элементы, как пружины или торсионы. Их функцию выполняют гидропневматические сферы, заполненные газом и жидкостью, которые, в свою очередь, разделены между собой высокопрочной эластичной мембраной. Отработка неровностей дорожной поверхности происходит за счет такого свойства объема газа, как его сжатие под воздействием жидкости. Гидропневматическая подвеска является адаптивной и способна изменять степень жесткости исходя из условий движения. Среди мировых производителей наибольших успехов в применении подобной схемы подвески на своих автомобилях достигла французская компания Citroen. Развитие ее фирменной системы Hydractive насчитывает несколько поколений, а история исчисляется с середины прошлого века.
Содержание
- История появления
- Поколения подвески
- Hydractive
- I поколение
- II поколение
- III поколение
- Основные элементы подвески Hydractive
- Принцип работы подвески Hydractive
- Преимущества гидропневматической подвески
- Недостатки гидропневматической подвески
История появления
Впервые подобный тип подвески был применен инженерами Citroen на задней оси автомобиля Traction Avantе в 1954 году. Позднее данная схема стала применяться в составе подвески всех колес на легендарных автомобилях Citroen DS. Фирменная адаптивная гидропневматическая подвеска Citroen Hydractive, созданная на базе предыдущих разработок, впервые была представлена в 1988 году на концепт-каре Activa.
Поколения подвески
Hydractive
I поколение
С 1990 года подвеска Hydractive 1 серийно устанавливалась на ряд автомобилей Citroen, включая модели Xantia и XM. Особенностью первых двух поколений было совмещение гидравлических магистралей тормозной системы, усилителя рулевого управления и подвески в один общий контур.
Было предусмотрено два режима:
- Sport – режим жесткой подвески для динамичной езды.
- Auto – режим автоматического изменения жесткости подвески на основе показаний датчиков, учитывающих текущие параметры движения (датчика положения педали газа, угла поворота рулевого колеса, давления в тормозной системе и других).
II поколение
Модернизация затронула режим Auto, который был изменен на Comfort. Движение в комфортном режиме предполагало автоматическое кратковременное увеличение жесткости подвески при прохождении поворотов и ускорении в целях сохранения лучшей управляемости и динамики автомобиля.
Вторым нововведением было добавление в гидравлический контур дополнительного резервуара с запорным клапаном, что позволило длительное время сохранять высокое давление в системе. Заданная высота кузова поддерживалась в течение нескольких недель без запуска двигателя. Начиная с 1994-го года подвеска Hydractive 2 устанавливалась на модели Xantia, с 1995-го – на XM.
III поколение
Система Hydractive 3 устанавливалась с 2001-го года на автомобили Citroen C5 и обладала следующими отличительными особенностями:
- Упрощена гидравлическая схема – тормозная система была выведена за пределы общего контура.
- Отсутствие функции ручного выбора режима работы подвески.
- Автоматическое уменьшение клиренса автомобиля на 15 мм от стандартного значения на скорости выше 110км/ч и увеличение дорожного просвета на 13 мм на скорости ниже 70 км/ч.
Определение оптимальной высоты положения кузова при движении производится на основании показаний датчиков скорости и датчиков высоты положения передней и задней частей автомобиля.
Улучшенная версия Hydractive 3 с индексом “+”, применявшаяся с 2005 года на дорогих комплектациях Citroen C5 и в качестве стандартного оснащения модели С6, имела следующие отличия от базовой:
- Водителю доступны два режима – Comfort (мягкая подвеска) и Dynamic (спортивный режим).
- Более совершенный алгоритм определения оптимального дорожного просвета, использующий в своей основе такие показатели, как: текущая скорость автомобиля, высота передней и задней части кузова, скорость вращения и угол поворота рулевого колеса, продольное и поперечное ускорение, скорость перемещения подвески, положение дроссельной заслонки.
Основные элементы подвески Hydractive
Современная система Hydractive состоит из следующих основных элементов:
- Гидроэлектронный блок управления – гидротроник (1), регулирующий давление и количество жидкости в системе.
- Передние (2) и задние (5) гидропневматические элементы, выполняющие функцию демпфирующих и упругих элементов подвески.
- Передняя (3) и задняя (6) дополнительные гидропневматические сферы, регулирующие жесткость подвески.
- Передний (4) и задний (7) датчики высоты положения кузова.
- Встроенный интерфейс (8).
- Датчик положения рулевого колеса (9).
- Расширительный бачок с жидкостью (10).
- Педаль акселератора (11).
- Педаль тормоза (12).
Принцип работы подвески Hydractive
Принцип работы подвески Hydractive основан на сжатии газа (азота), который закачан под давлением в объем верхней полости гидропневматической сферы (над мембраной). Нижняя часть сферы под мембранной заполнена специальной жидкостью (маслом). Гидропневматическая сфера объединена с амортизатором и, таким образом, представляет собой единую конструкцию (стойку), выполняющую роль как упругого, так и демпфирующего элемента. Шток с поршнем амортизатора соединен с соответствующим рычагом подвески. При сжатии подвески, поршень движется вверх, оказывая воздействие на жидкость. Поскольку жидкость несжимаема, усилие передается далее на мембрану и на объем газа в сфере.
Газ “пружинит” и возвращает свой первоначальный объем, чем и обусловлено его применение в качестве упругого элемента. Гашение колебаний происходит за счет дросселирования потока жидкости, проходящей через клапан при перемещении поршня как в обычном амортизаторе. Изменение сечения электромагнитного клапана делает ход поршня “мягче” или “жестче”, тем самым изменяя характеристики подвески.
На последнем поколении Hydractive 3 используется жидкость LDS (оранжевого цвета) на базе синтетических компонентов, в отличии от применявшегося в предшествующих генерациях минерального масла LHM (зеленого цвета). Новая жидкость обладает лучшими рабочими качествами и более долговечна. Замена необходима лишь раз в 5 лет или через 200 000 км.
Преимущества гидропневматической подвески
- Превосходная плавность хода.
- Отличная управляемость, в том числе на неровной дороге.
- Возможность изменения дорожного просвета.
- Автоматическая адаптация характеристик жесткости подвески под текущие условия движения.
- Возможность выбора желаемого режима работы подвески исходя из стиля вождения.
- Длительный срок службы гидропневматических элементов (до 25 0000 км пробега) и увеличенные интервалы обслуживания.
Недостатки гидропневматической подвески
- Сложность конструкции.
- Высокая стоимость производства.
- Высокая стоимость обслуживания и ремонта.
В связи со своей высокой стоимостью и сложностью изготовления гидропневматическая подвеска редко встречается на большинстве серийных автомобилей. В основном она применяется на автомобилях премиум-сегмента такими производителями, как, например, Bentley, Rolls-Royce и Mercedes-Benz. Одним из автомобилей, на котором уже много лет успешно применяется подобная схема подвески, является популярный во всем мире внедорожник класса “люкс” Lexus LX570. На последнем поколении Citroen C5 устанавливается обычная гидравлическая подвеска. Гидропневматические элементы были упразднены в целях снижения стоимости и повышения уровня доступности автомобиля. Помимо автомобилестроения гидропневматическая подвеска применяется также в шасси специальных машин и военной техники.
(9 оценок, среднее: 4,22 из 5)
Загрузка…
Гидравлические системы подвески представляют собой тип системы подвески, в которой используется работа с использованием жидкости под давлением для питания двигателя и управления движением подвески автомобиля. Они обычно используются в тяжелых грузовиках, роскошных автомобилях, автобусах и других крупных транспортных средствах, которые требуют плавного хода и отличной управляемости. Система предназначена для обеспечения плавной и комфортной езды.
Давайте подробнее рассмотрим системы гидравлической подвески, их компоненты, принцип их работы, их преимущества и недостатки.
Как работает система гидравлической подвески?
Гидравлическая система подвески работает за счет использования гидравлической жидкости для передачи мощности и регулирования движения системы подвески в автомобилях. Он включает в себя давление гидравлической жидкости с помощью гидравлического насоса, которая затем направляется через шланги и клапаны к гидравлическим цилиндрам на каждом колесе.
В случае столкновения с препятствием или неровной поверхностью система гидравлической подвески сжимает подвеску и выдвигает гидравлические цилиндры для поглощения удара и поддержания устойчивости автомобиля. Жесткостью и демпфированием системы можно управлять, манипулируя клапанами, чтобы регулировать поток гидравлической жидкости в цилиндры. Кроме того, добавление или выпуск жидкости из цилиндров может изменить высоту подвески.
Гидравлическая система подвески работает поэтапно, обеспечивая плавную и комфортную езду.
- Сначала гидравлический насос нагнетает гидравлическую жидкость и направляет ее в гидроцилиндры.
- Когда автомобиль сталкивается с препятствием, подвеска сжимается, а гидравлические цилиндры выдвигаются, позволяя колесам двигаться вверх и вниз, чтобы поглотить удар.
Компоненты гидравлической системы подвески
Гидравлическая система подвески состоит из нескольких компонентов, которые вместе обеспечивают комфортную и безопасную езду. К основным компонентам системы гидравлической подвески относятся:
- Гидравлический насос : Гидравлический насос нагнетает гидравлическую жидкость и направляет ее через сеть шлангов и клапанов в гидравлические цилиндры.
- Гидравлическая жидкость : основной функцией гидравлической жидкости в системе гидравлической подвески является облегчение передачи мощности и регулирование движения подвески автомобиля.
- Клапаны : Клапаны отвечают за регулирование потока гидравлической жидкости в каждый цилиндр, тем самым изменяя жесткость и демпфирование подвески.
- Стойки : Стойки являются неотъемлемыми компонентами, которые обеспечивают структурную поддержку транспортного средства и связывают гидравлические цилиндры либо с осью, либо с рамой транспортного средства, помогая выдерживать его вес. Чтобы понять разницу между стойками и амортизаторами, важно знать, что в большинстве современных автомобилей стойки используются спереди, а амортизаторы — сзади.
- Датчики : датчики используются для отслеживания положения и движения автомобиля и обеспечивают обратную связь с гидравлической системой для регулировки жесткости и демпфирования подвески.
- Гидравлические цилиндры : Внутри гидравлических цилиндров есть поршень и шток, которые выдвигаются и входят соответственно в зависимости от давления гидравлической жидкости.
Плюсы и минусы системы гидравлической подвески
Системы гидравлической подвески имеют как преимущества, так и недостатки. Некоторые из плюсов и минусов систем гидравлической подвески заключаются в следующем:
Преимущества гидравлической системы подвески
- Комфорт : Гидравлические системы подвески обеспечивают плавную и комфортную езду с помощью амортизаторов, вызываемых на неровной местности.
- Стабильность : системы гидравлической подвески обеспечивают устойчивость, сохраняя ровное положение автомобиля даже при резком торможении, ускорении и прохождении поворотов.
- Долговечность : системы гидравлической подвески очень долговечны и требуют минимального обслуживания благодаря простоте конструкции и конструкции.
- Улучшенная аэродинамика : эти системы также могут улучшить аэродинамику автомобиля за счет снижения высоты дорожного просвета на более высоких скоростях.
- Улучшенная управляемость : они обеспечивают больший контроль над высотой автомобиля и могут быть легко отрегулированы для улучшения управляемости и устойчивости.
Недостатки системы гидравлической подвески
- Стоимость : Гидравлические системы подвески могут быть дорогими в установке и обслуживании.
- Вес : они могут быть тяжелее других систем подвески, что может повлиять на эффективность использования топлива и ускорение.
- Сложность : сложность этих систем может привести к более значительным затратам на ремонт и потребовать специализированных технических специалистов.
Типы транспортных средств, использующих системы гидравлической подвески
Различные типы подвесок, доступные на рынке, могут использоваться для управления различными транспортными средствами. Что касается гидравлической подвески, следующие типы транспортных средств используют гидравлическую подвеску.
- Тяжелые грузовики : системы гидравлической подвески обычно используются в большегрузных грузовиках и автобусах. Это потому, что они обеспечивают плавную и комфортную езду даже при перевозке тяжелых грузов.
- Роскошные автомобили : многие производители роскошных автомобилей, такие как Rolls-Royce, Bentley и Mercedes-Benz, используют гидравлические системы подвески в своих моделях высокого класса.
- Спортивные автомобили . Некоторые производители спортивных автомобилей, такие как Porsche, используют гидравлические системы подвески в своих высокопроизводительных моделях для улучшения управляемости.
- Внедорожники : Системы подвески используются во внедорожниках, где они могут обеспечить устойчивость на пересеченной местности.
Системы гидравлической подвески представляют собой сложную технологию, обеспечивающую комфортную и безопасную езду. Хотя у них есть некоторые недостатки, такие как их стоимость и сложность, они предлагают существенные преимущества. Вот почему подвеска является довольно популярным выбором для тяжелых грузовиков, автомобилей класса люкс и внедорожников. Поскольку технологии продолжают развиваться, системы гидравлической подвески, вероятно, станут еще более совершенными, предлагая больше преимуществ как водителям, так и пассажирам.
Если вы ищете какой-либо из подержанных автомобилей с гидравлической подвеской, выставленных на продажу в ОАЭ, просмотрите списки здесь.
Оставайтесь с нами в ведущем автомобильном блоге dubizzle, чтобы получать больше новостей об автомобильных запчастях.