Гмп что это в автомобиле

Гидромеханическая передача (ГМП) успешно применяется на автомобилях уже более полувека и дает возможность заметно облегчить управление автомобилем.
Применение гидромеханической передачи на автомобиле позволяет получить следующие преимущества:
1. Обеспечение автоматизации переключения передач и отсутствие необходимости иметь педаль сцепления.
2. Повышение проходимости автомобиля в условиях бездорожья за счет отсутствия разрыва потока мощности при переключении передач.
3. Повышение долговечности двигателя и агрегатов трансмиссии за счет способности гидротрансформатора снижать динамические нагрузки.
В то же время как недостаток необходимо отметить потерю мощности и повышение расхода топлива за счет более низкого КПД ГМП по сравнению с автомобилем, имеющим механическую коробку передач.
Гидромеханическая передача включает в себя три основные части:
— гидротрансформатор;
— механическую коробку передач;
— систему управления.
На автомобилях ГМП впервые появилась в США: в 1940 г. коробка Hydramatic была установлена на автомобилях Oldsmobile. Еще с начала 1930-х гг. на английских автобусах использовалась гидромеханическая трансмиссия Wilson, которая не была автоматической, но облегчала работу водителя. В настоящее время в США ГМП снабжаются 90 % легковых автомобилей, а также все городские автобусы и значительная часть грузовых автомобилей. В Европе массовое применение ГМП началось только в начале семидесятых годов прошлого века, когда эти передачи нашли применение в автомобилях Mercedes-Benz, Opel, BMW. В это же время в Европе строятся специализированные заводы по производству ГМП: фирма Borg-Warner строит завод в Англии (г. Летифорд), Ford — в г. Бордо (Франция), GM — в Страсбурге (Франция). В Японии появляются сразу два специализированных производства — Jatco и Aisin-Warner.

Гидротрансформатор был изобретен немецким профессором Феттингером в 1905 г. Простейший гидротрансформатор, выполнен в виде камеры тороидальной формы и включает в себя три лопастных колеса: насосное, вал которого соединен с коленчатым валом двигателя; турбинное, соединенное с трансмиссией, и реактор, установленный в корпусе гидротрансформатора.

Система автоматического управления АКП. Конец 80-х гг. ознаменовался повсеместным внедрением электроники. Она позволяет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 6–8 %). Электронное управление предоставило неограниченные возможности для самодиагностики, что позволило корректировать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Назад

Гидромеханические коробки передач



Гидромеханическая передача является комбинированной, в которой наряду с гидротрансформатором применяется ступенчатая коробка передач. Обычно такую коробку передач сокращенно называют ГМП или ГМКП.

Гидротрансформатор, как и гидромуфта был изобретен немецким профессором Германом Феттингером в начале прошлого века. Прежде чем найти применение на автомобилях, эти гидродинамические передачи использовались в судостроении.

гидромеханическая коробка передач

На автомобилях ГМП впервые появилась в США — в 1940 г. коробка Hydramatic была установлена на автомобилях Oldsmobile. В настоящее время в США гиромеханическими коробками передач оснащаются почти 90 % легковых автомобилей, а также все городские автобусы и значительная часть грузовых автомобилей.
В Европе массовое применение гидромеханических коробок передач началось только в начале семидесятых годов прошлого века, когда эти передачи нашли применение в автомобилях Mercedes-Benz, Opel, BMW.

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро¬трансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханическая передача является бесступенчатой и позволяет получить любое передаточное число в заданном диапазоне.

В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и вальные ступенчатые коробки передач с автоматическим управлением.

Устройство и работа гидротрансформатора, а также его отличие от гидромуфты подробнее рассмотрено здесь.

В некоторых случаях гидротрансформатор устанавливается дополнительно к стандартному фрикционному сцеплению и ступенчатой коробке передач, при этом переключение передач происходит ручным способом.
В такой конструкции достаточно однодискового сцепления, так как оно служит только для отключения первичного вала коробки передач от турбинного колеса трансформатора при переключении передач, а плавность увеличения крутящего момента обеспечивает гидротрансформатор.
Достоинством такой передачи является относительная простота конструкции и управления по сравнению с автоматизированной передачей. Однако наиболее часто гидротрансформатор используется в сочетании двух- или трехступенчатой коробкой передач без стандартного фрикционного сцепления.
Коробки передач выполняются вальными или чаще планетарными. Управление переключением передач автоматическое или полуавтоматическое.

***

Двухступенчатая вальная коробка передач

Гидротрансформатор в сочетании с двухступенчатой вальной коробкой передач применяется в гидромеханической передаче автобуса ЛиАЗ-677М (рис. 1).
Она представляет собой редуктор с расположенными внутри него валами: первичным 3, вторичным 11 и промежуточным 15. Первичный вал связан с турбиной гидротрансформатора, а вторичный вал – с карданной передачей трансмиссии. Первая (понижающая) передача имеет передаточное число 1,79, а вторая передача – прямая, т. е. ее передаточное число равно единице.

устройство и работа гидромеханической передачи

Особенностью такой коробки передач является то, что для включения передач наряду с зубчатой муфтой используются многодисковые муфты (фрикционы), работающие в масле.
Ведущие диски фрикционов – стальные, а ведомые – металлокерамические. Они устанавливаются на внутренних или наружных шлицах и имеют возможность незначительного перемещения в осевом направлении. В разъединенном положении пакет дисков удерживают пружины, сжимание дисков происходит от воздействия масла, подаваемого в цилиндр включения фрикциона.

При включении первой передачи срабатывает фрикцион 5, который блокирует зубчатое колесо 4 с первичным валом 3. Муфта 8 при этом смещается влево и блокирует зубчатое колесо 7 с вторичным валом 11.
Крутящий момент передается через зубчатое колесо 4 первичного вала, зубчатые колеса 16 и 14 промежуточного вала и зубчатое колесо 7 на вторичный вал 11. При включении второй передачи срабатывает фрикцион 6, который блокирует первичный вал 3 с вторичным валом 11. Муфта 8 устанавливается в нейтральное положение.

как устроена и работает гидромеханическая коробка передач

Для движения задним ходом муфта 8 перемещается в правое положение и блокирует зубчатое колесо 10 с вторичным валом 11, затем включается фрикцион 5. Крутящий момент передается через зубчатые колеса 4, 16, 13, 12, 10 на вторичный вал 11 коробки передач.

При включении фрикциона 2 происходит блокировка гидротрансформатора, когда турбинное и насосное колеса жестко соединяются друг с другом, и он переходит в режим гидромуфты.

***



Трехступенчатая планетарная коробка передач

В гидромеханических передачах наибольшее применение нашли планетарные коробки передач. Они обладают компактностью, пониженным уровнем шума при работе и длительным сроком службы. Переключение передач в них происходит практически без разрыва потока мощности.

Основным звеном планетарной коробки передач является планетарный ряд (рис. 2), состоящий из эпициклического (коронного) зубчатого колеса 1, солнечного зубчатого колеса 2, водила 3 и сателлитов 4.
Оси сателлитов установлены на водиле и вращаются вместе с ним, т. е. они подвижны. В зависимости от того, какой элемент планетарного ряда является ведущим, а какой заторможен, происходит изменение передаточных чисел планетарного ряда.

устройство и работа гидромеханической коробки передач

Двухступенчатые коробки передач имеют один планетарный ряд. Многоступенчатые могут иметь два и более планетарных рядов, которые связаны друг с другом.
Торможение элементов планетарных рядов при переключении передач производится фрикционными муфтами (фрикционами) или ленточными тормозными механизмами.

Конструкция гидромеханической передачи легкового автомобиля, в которой гидротрансформатор сочетается с трехступенчатой планетарной коробкой передач представлена на рис. 3.

Гидротрансформатор 1 состоит из трех колес с лопастями. Вал 2 турбинного колеса является ведущим валом коробки передач. Ведомый вал 12 коробки передач расположен соосно с ведущим валом. Коробка передач включает два одинаковых планетарных ряда 7 и 8, три многодисковых фрикциона 5, 6, 9 и два ленточных тормозных механизма 4, 10.

Переключение передач осуществляется включением фрикционов и тормозных механизмов в различных комбинациях (рис. 4).
В нейтральном положении включен тормозной механизм 10 (рис. 3) и сблокирована муфта 13 свободного хода. Ведомый вал 12 не вращается.

На первой передаче включены фрикцион 6 и тормозной механизм 10, а также включена муфта 13 свободного хода. Эпициклическое зубчатое колесо планетарного ряда 8 вращается с угловой скоростью ведущего вала 2, а солнечное зубчатое колесо заторможено, водило вращает эпициклическое зубчатое колесо планетарного ряда 7, в котором солнечное зубчатое колесо также заторможено. Ведомым является водило этого ряда, выполненное заодно с ведомым валом 12. Муфта свободного хода 13 включена.

устройство и принцип действия гидромеханической коробки передач

На второй передаче включены фрикцион 5 и тормозной механизм 10. Эпициклическое зубчатое колесо планетарного ряда 8 вращается свободно, а планетарного ряда 7 – с угловой скоростью ведущего вала 2.
Так как солнечное зубчатое колесо заторможено, то вращается водило и ведомый вал 12. Муфта свободного хода 13 включена.

На третьей передаче включены фрикционы 5 и 6, а также тормозной механизм 10. Эпициклическое зубчатое колесо и водило планетарного ряда 8 ведущие. С такой же угловой скоростью вращаются эпициклические зубчатые колеса и водило планетарного ряда 7, т. е. ведущий и ведомый валы вращаются с одинаковой частотой.

На передаче заднего хода включен фрикцион 6 и тормозной механизм 4. Водило планетарного ряда 8 заторможено, а эпициклическое зубчатое колесо ведущее.
Солнечное зубчатое колесо вращается в обратном направлении, в этом же направлении вращается солнечное зубчатое колесо планетарного ряда 7. Так как эпициклическое зубчатое колесо планетарного ряда 7 заторможено, ведомым является водило, связанное с ведомым валом 12.
Муфта свободного хода 13 заблокирована.

***

Управление гидромеханической коробкой передач



Гидромеханическая коробка передач (ГМП) — это трансмиссия высокой проходимости с автоматическим управлением. ГМП поддерживает необходимую скорость автомобиля в разных режимах движения, упрощая процесс вождения. Подобные коробки используют в легковых автомобилях, грузовиках, автобусах, в тяжёлой технике мощностью до 1000 л. с. Гидромеханические коробки передач производят компании ZF, Borg Warner, Aisin, Mercedes-Benz, Voith, Honda, Allison, Caterpillar, Komatsu, БелАЗ и др.

Устройство гидромеханической коробки передач

Содержание

  1. Роль АКПП с гидромеханическим управлением
  2. Функции гидротрансформатора
  3. Конструкция гидромеханики
  4. Как работает вальная кпп
  5. Как работает планетарная кпп
  6. Электронная часть гидромеханической акпп
  7. Сильные и слабые стороны гидромеханики
  8. Перспективы использования гидромеханической коробки передач
  9. Заключение

Роль АКПП с гидромеханическим управлением

Что будет, если двигатель соединить напрямую с колёсами: машина лениво начнёт движение и поедет с максимальной скоростью 20 км/ч. По законам физики сила, которую должны преодолеть колёса равна F=ma+Fтр , где m — масса автомобиля, Fтр — сила трения с поверхностью земли. Двигатель достигнет максимальной мощности при оборотах 5000 — 6000 об/мин, но в таком режиме работы ресурс агрегата быстро иссякнет.

Гидромеханическая коробка ZF9HP

Чтобы мгновенно стартовать после нажатия педали газа, и защитить двигатель от перегрузки, в машине установлена трансмиссия. Она также способна изменять крутящий момент, ускоряя или замедляя автомобиль. Этот узел трансмиссии называется коробка переключения передач — КПП.

По типу переключения скоростей различают механические и автоматические КПП:

  • механикой полностью управляет водитель, выжимая педаль сцепления и переводя рычаг для изменения скорости;
  • в автоматах работает гидромеханическая передача с минимальным участием водителя.

Гидромеханическое управление облегчает и упрощает работу водителя, снимая часть «обязанностей». Плавность и бесшумность АКПП повышает комфорт вождения при трогании и разгоне. Также ГМП защищает двигатель и коробку от динамических нагрузок, которые может создать водитель, постоянно «выжимая» газ.

Основные элементы гидромеханической коробки передач:

  • гидротрансформатор;
  • масляный насос;
  • коробка передач;
  • система управления.

Функции гидротрансформатора

Гидромеханическая коробка передач работает за счёт движения жидкости, которую качает масляный насос. Главный «потребитель» масла — гидротрансформатор (ГДТ). ГДТ преобразует и передаёт крутящий момент от коленчатого вала в трансмиссию через работу жидкости.

Функции гидротрансформатора

Конструктивно ГДТ представляет собой набор лопастных колёс, «запертых» в герметичной камере в форме бублика:

  • насосное колесо приварено к чаше корпуса и соединено с коленвалом;
  • турбина через ступицу насажена на вал трансмиссии, и механически не связана с насосным колесом;
  • реакторное колесо установлено между турбиной и насосом. Предназначено для усиления крутящего момента.

Гидромеханическая коробка передач начинает работать с запуском двигателя: включается масляный насос и насосное колесо. На лопасти колеса попадает жидкость и раскручивается вокруг оси ГДТ. Под действием центробежной силы масло отбрасывается на лопасти турбины, проходит через реактор и возвращается к насосному колесу. Под давлением потока лопатки турбины начинают вращаться, передавая крутящий момент по валу в коробку передач.

Чем выше обороты двигателя, тем быстрее вращаются колёса ГДТ, а крутящий момент снижается. Без реактора «бублик» работал бы только в режиме гидромуфты, передавая вращение без трансформирования. В момент, когда скорости насоса и турбины выравниваются, реактор начинает свободно вращаться, усиливая давление жидкости, попадающей на лопасти насоса.

Большая часть энергии двигателя уходит на перемещение и нагрев масла в ГДТ. В результате снижается общий КПД, и растёт расход топлива. Для устранения этого недостатка в «бублик» устанавливают муфту блокировки с фрикционной накладкой. При включении муфты двигатель и трансмиссия жёстко сцепляются, и передача момента происходит без потерь.

Муфта блокировки гидротрансформатора

Передаточное число гидротрансформатора достигает максимально 2,5 — 3, что не достаточно для устойчивой работы двигателя в разных режимах движения машины. Нет возможности включить задний ход, поскольку колёса ГДТ вращаются только в одном направлении. Для компенсации этих недостатков гидромеханическая коробка передач оснащена дополнительным узлом.

Конструкция гидромеханики

В ГМП применяют простые ступенчатые или планетарные механизмы с электронным управлением. Принцип работы гидромеханической коробки передач в обоих вариантах заключается в изменении скорости вращения выходного вала за счёт различных передаточных чисел зубчатых передач.

Как работает вальная кпп

Устройство гидромеханической коробки передач вального типа похоже на механическую КПП. Преобразование крутящего момента происходит ступенчато через включение и отключение зубчатых передач, расположенных на параллельных валах. Количество и размер шестерённых пар соответствует определённому передаточному числу.

Первичный, входной вал, получает крутящий момент от гидротрансформатора. Через пару постоянно сцепленных шестерней мощность передаётся на вторичный вал, а затем на колёса. Для получения прямой передачи, в конструкцию добавляют промежуточный вал, а первичный и вторичный валы располагают на одной оси.

Для расширения диапазона скоростей применяются многовальные конструкции с 4 и более валами. Работа коробки при этом усложняется, увеличиваются габариты и масса. Подобные ГМП встречаются на грузовиках-тягачах.

Гидромеханическая коробка MGPA

Зубчатыми передачами управляют фрикционные многодисковые муфты. Муфта становится тормозом, когда соединяется с корпусом ГМП. Для включения блокировки масляный насос подает гидравлическое давление на фрикционы. Благодаря фрикционам скорость переключается плавно, а использование гидропривода ускоряет торможение.

Гидромеханические коробки передач вального типа плохо справляются с растущей тягой от повышения грузоподъёмности транспорта, с ужесточением требований по топливной экономичности. Рост параметров значительно увеличивает массу и габариты конструкции. По этим причинам вальные КПП заменяют на планетарные передачи.

Как работает планетарная кпп

Инженеры предпочитают устанавливать в гидромеханическую КПП планетарный механизм вместо ступенчатой конструкции по следующим причинам:

  • компактные размеры;
  • плавная и быстра работа;
  • нет разрыва в передаче мощности при переключении передач;
  • большое количество передаточных чисел за счёт использования многорядных конструкций.

Гидромеханическая коробка с планетарным механизмом

Простая планетарная передача состоит из центральных шестерней: с внутренними зубьями — короны, с внешними зубьями — солнца. Между ними обкатываются зубчатые колёса сателлиты, оси которых закреплены на раме-водиле. В зависимости от конструкции водило соединено с выходным валом или коронной шестерней.

Устройство планетарной коробки определяет её принцип действия. Чтобы изменить крутящий момент гидротрансформатора, один из элементов планетарной передачи вращают, а другой элемент затормаживают. Третий элемент становится ведомым, а его скорость определяется числом зубьев всех шестерней.

Для получения прямой передачи водило и солнечную шестерню жёстко соединяют. Корона не может проворачиваться относительно закреплённой системы, поэтому механизм вращается как единый узел. Передаточное число в этом случае равно 1.

Чтобы получить задний ход, центральные шестерни вращают в одну сторону. Для этого останавливают сателлиты, блокируя водило.

В качестве тормозов планетарной коробки передач используют тормозные ленты или фрикционные диски. Блокировочные элементы работают в автоматическом режиме по сигналу электроники.

Электронная часть гидромеханической акпп

В гидромеханическом автомате отсутствует сцепление, поэтому каждая ступень коробки снабжена элементом переключения. Работу элементов контролирует электронный блок ЭБУ, связанный с блоком управления двигателем. Во время переключения передач автоматически регулируется частота вращения мотора, что помогает достичь оптимальных рабочих характеристик агрегата.

Электронная часть гидромеханической АКПП

Система электронного управления гидромеханической коробки передач разбита на подсистемы:

  • измерительную — для сбора параметров с датчиков давления, температуры и т.д.;
  • функциональную — для управления маслонасосом, регуляторами давления и т.д.;
  • управляющую — для выдачи сигнальных импульсов.

Для автоматизации управления помимо ЭБУ в систему входят электроклапаны, датчики, усилители, регуляторы, корректирующие элементы и т.д. Электроклапаны — соленоиды, расположены в гидроблоке, и по сигналу ЭБУ открывают канал гидроплиты для прохода жидкости к фрикционам, гидротрансформатору и другим узлам.

Электронная часть гидромеханической АКПП

В зависимости от положения селектора ЭБУ действует по программному алгоритму, заложенному в память:

  • при плавном разгоне дроссельная заслонка двигателя открывается медленно. Компьютер отслеживает степень открытия заслонки и посылает импульсы узлам гидромеханической коробки передач для увеличения скорости. При достижении первой передачи (20 км/ч), коробка переходит на вторую скорость. Такой режим движения называется «экономичным»;
  • при агрессивном разгоне ЭБУ работает в «спортивном» режиме. Каждая последующая передача включаются после того, как двигатель максимально раскрутится. Если водитель отпустит педаль газа, обороты упадут не сразу. В этом режиме мотор развивает максимальную мощность, увеличивается расход топлива и снижается ресурс АКПП.

«Умное» управление проводит самодиагностику для корректирования работы ГМП. Например, если масло в коробке грязное, то в системе падает давление. Для защиты узлов ЭБУ может блокировать переключение передач, перераспределять нагрузку между электроклапанами, запретить включение гидротрансформатора. Неисправности и сбои в коробке компьютер записывает в виде кодов.

Электронная часть АКПП

Компьютер умеет адаптироваться, выбирая подходящий режим под стиль вождения, динамику разгона и манеру торможения. Адаптация снижает износ коробки за счёт снижения числа переключений. При этом повышается комфорт водителя и безопасность движения.

Сильные и слабые стороны гидромеханики

Гидромеханическая коробка передач привлекает водителей простым управлением, плавностью переключения, низкой ценой по сравнению с вариаторами или DSG. И это ещё не все достоинства.

Сильные стороны Слабые стороны
 Высокая безопасность движения, поскольку водитель больше концентрируется на дороге. Дорогой ремонт из-за сложной конструкции и количества электроники.
Лёгкая и быстрая обучаемость вождения для новичков. Высокий расход и стоимость оригинального масла .
Защита двигателя от перегрузок, за счёт автоматического переключения скоростей и адаптации к стилю вождения. При долгих и частых пробуксовках масло в коробке перегревается, поэтому нужно избегать движения по грязи.
КПД гидротрансформатора достигает 97% при включении муфты блокировки. Фрикционы истираются, загрязняя и перегревая трансмиссионную жидкость.
За счёт использования реактора момент на турбинном колесе ГДТ приумножает крутящий момент двигателя. Это повышает ресурс и проходимость автомобиля. В мороз гидромеханику нужно долго прогревать, чтобы масло пришло в рабочее состояние.
Гидромеханическая коробка передач

имеет возможность автоматизации каждого узла, что делает трансмиссию перспективной.

Автоматизация ГМП не позволяет водителю полностью «прочувствовать» управление автомобилем.

Гидромеханическая коробка передач будет работать безотказно долгие годы при регулярном техобслуживании и соблюдении условий эксплуатации.

Перспективы использования гидромеханической коробки передач

Гидромеханическая коробка  передач постоянно совершенствуется:

  • растёт число ступеней: ZF поставляет 9-ступенчатую ZF9НР для легковых автомобилей, Caterpillar устанавливает в спецтехнику 7-ступенчатые ГМП;
  • меняются кинематические схемы;
  • отрабатываются новые алгоритмы электронного управления;
  • снижается расход топлива и выбросов;
  • повышается скорость и плавность работы.

Большую перспективу имеет гидромеханическая коробка передач с планетарным механизмом. Трансмиссия подходит для маломощных и сверхмощных двигателей за счёт добавления новых планетарных рядов и варьирования передаточными числами. Новые технические решения повышают экономичность автомобиля. Добавление ступеней устраняет «провалы» в переключении скоростей, достигая максимальной плавности.

Производители выпускают ГМП разных типоразмеров для мощности двигателя от 50 до 1500 кВт. С ростом грузоподъёмности спецтехники увеличивается КПД и тяговые характеристики трансмиссии.

Развитие интеллектуальных автоматизированных систем управления и диагностики направлено на повышение эффективности автомобиля и обеспечения безопасности водителя. Гидромеханическая коробка передач приспособлена к автоматизации, что открывает большие возможности для расширения функциональности механизмов и систем.

Перспективы гидромеханической коробки передач

Заключение

Гидромеханическая трансмиссия в автомобилях используется с 1940-х годов, а переход на электронное управление начался в 1980-х. С тех пор АКПП стала более функциональной, плавной, надёжной. Удачная конструкция позволяет совершенствовать систему управления и повышать технические характеристики, а значит расширять сферу применения гидромеханических коробок передач.

Гидромеханическая коробка передач

MOTORAN.RU

Автомобильная трансмиссия пережила уже больше века эволюционного развития. В последние десятилетия гидромеханическая коробка передач, не требующая от шофера ручного переключения ступеней трансмиссии, стала весьма популярным вариантом компоновки автомобиля и все чаще устанавливается на транспортные средства различных ценовых сегментов.

Гидромеханическая коробка передач: принцип работы и устройство

Классическая конструкция автомобиля подразумевает наличие в нем двух обязательных блоков:

  • коробка переключения передач;
  • сцепление.

Такое описание подходит для знакомой автомобилистам уже много десятилетий механической коробки. Но со временем, по мере развития технологий, стали появляться другие вариации узла КПП, обеспечивающие человеку за рулем больший комфорт передвижения.

Трансмиссия – один из базовых узлов автомобиля. Благодаря ей обеспечивается передача крутящего момента с двигателя машины на колеса. В автомобильном деле много лет безраздельно господствовала механическая КПП, предусматривающая в своем конструктиве описанные выше блоки. Водитель должен был выполнить три последовательных операции:

  • отключить мотор авто от трансмиссии на момент переключения (выжать сцепление);
  • дать команду на смену крутящего момента путем перемещения рычага КПП в нужное
  • положение;
  • отжать сцепление, вернув двигателю связь с колесами.

Но ситуация изменилась, инженеры создали КПП, где педали сцепления нет. Процесс управления автомобилем для человека в таком случае значительно упрощается: ЭБУ осуществляет переход на нужную передачу сам. Управление производится селектором коробки, педалями тормоза и газа.

Трогаясь с места, водитель выжимает тормоз, перемещает селектор в положение D (Drive), отпускает тормоз, и начинает движение. На 1 передачу, 2 и далее АКПП переходит сама, в зависимости от скорости авто, положения педали газа, оборотов двигателя и других факторов, контроль которых осуществляется множеством датчиков.

Этот процесс обеспечивается применением нескольких технологий, гидромеханическая КПП среди которых – самая известная, «обкатанная» в производстве и надежная. В ней смена передач на фрикционах производится посредством циркуляции под давлением трансмиссионного масла по коробке.

Современная гидромеханическая трансмиссия – это сложное устройство, состоящее из следующих основных компонентов:

  • гидротрансформатор;
  • ЭБУ – электронный «мозг» коробки, и управляющие механизмы;
  • фрикционные элементы;
  • создающий давление масла насос;
  • пружины и каналы гидромеханической системы;
  • механическая коробка.

Читайте также. 42le АКПП- Обзор трансмиссии

Последнее – не опечатка, в основе АКПП действительно лежит «механика», конструктивно дополненная блоками автоматического переключения с гидротрансформатором – отсюда и название узла. Типичная гидромеханическая КПП в разрезе:

коробка

История коробки-автомата началась в первой четверти 20 века: тогда концерн Ford начал внедрять первые образцы «гидромеханики» в свою продукцию. В СССР АКПП массового распространения среди конечного потребителя не получила, хотя, например, в конце 50-х годов завод ЛАЗ в сотрудничестве с НАМИ разработал и внедрил гидромеханическую трансмиссию в автобусы серии ЛАЗ-695Ж. Позднее ее использовали и в модели ЛиАЗ-677, было выпущено около 200 тыс. автобусов на АКПП.

Гидромеханика ЛАЗ в разрезе:

гидромеханика

В современном же автомобилестроении «автомат» встречается очень часто, даже в бюджетных моделях машин.

Про гидротрансформатор

Сердце рассматриваемого типа коробки – узел, называемый гидротрансформатором. Его устройство можно увидеть на схеме:

гидротранс

Узел расположен между механической частью КПП и двигателем, и выполняет функции сцепления. Применение гидротрансформатора позволяет, помимо удобства водителя, дать транспортному средству плавность трогания с места и остановки, и обеспечить движение без рывков. Это прямым образом влияет на долговечность двигателя, поскольку значительно снижаются неизбежные при эксплуатации авто на «механике» динамические нагрузки.

Конструктивно данный узел составлен из дисков с лопастями, соединенных друг с другом:

  • турбинное лопастное колесо, связанное жестко с валом коробки;
  • колесо реактора (статор), усиливающее момент кручения;
  • насосное лопастное колесо, связывающее мотор и узел гидротрансформатора.

Интересно: весь дисковый блок объединен одним кожухом, на три четверти погруженным в трансмиссионное масло, представляющее собой основную рабочую среду АКПП.

Насосное колесо вращается синхронно с маховиком, на аналогичной скорости. Когда происходит вращение, трансмиссионное масло поступает на турбинное колесо, передавая последнему усилие вращения. Далее масло идет на колесо реактора, перемещающее жидкость обратно к исходному насосному колесу. Благодаря процессу циркуляции рабочего тела под напором происходит передача момента вращения на колеса.

Интересно: блок автоматически определяет требуемое передаточное число и передает на АКПП усилие, а коробка уже включает фрикционами нужную передачу.

Помимо легкового транспорта, гидротрансформаторы используются в тяжелой технике: некоторых моделях маневровых тепловозов и локомотивов, дизельных тракторов, тягачей, подъемных кранов. Подобным устройством приводились в движение гребные винты буксира «Маршал Блюхер». Оснащенные гидродинамической трансмиссией автомобили «Чайка», «Волга», «ЗИЛ» также снабжались гидротрансформаторами.

Читайте также. Трансмиссии — 6DCT, 7DCT, 6DCT450 6DCT451

Существуют разновидности гидромеханической автоматической трансмиссии:

  • вальная;
  • планетарная.

Как работает вальная КПП

Вальные «автоматы» довольно широко применяются в производстве автобусов, большегрузных ТС. Слово «вальная» относится к механической коробке в составе АКПП. «Механический» узел бывает в данном случае:

  • многовальным;
  • двухвальным;
  • трехвальным.

Для смены передач задействуются погруженные в специальное масло многодисковые муфты, а задний ход, первая ступень трансмиссии в некоторых случаях включаются зубчатой муфтой. Устройство таких АКПП позволяет переключать скорости фрикционами за счет работы коленвала, при этом не происходит потерь мощности и просадки момента вращения.

Классическая схема – двухвальная, с первичным (ведущим), вторичным (ведомым) валами, несущими шестеренки. В трехвальной схеме имеется также вал промежуточный, где расположена соединенная с главной передачей шестерня.

Вальные модели нашли ограниченное применение в легковых авто: в частности, ими оснащены многие автомобили Honda и ряд моделей концерна Mercedes. Использование подобных КПП связано с определенными техническими затруднениями: на задне приводных машинах к коробке передач применяется требование соосности, и вальная АКПП должна иметь на шестернях не менее двух зацеплений на передачу. А это снижает КПД.

Еще один недостаток – высокие дисковые потери, если число передач у транспортного средства больше трех. В вальной коробке в таком случае много выключенных сцеплений, что ведет к указанным потерям. Кроме того, валы достаточно велики по длине, что делает коробку габаритной и уменьшает свободное пространство в салоне, а также увеличивает шумность и снижает надежность. Частично это решено внедрением трехвальных коробок, с более короткими, жесткими и надежными валами.

Как работает планетарная КПП

Для гидромеханических трансмиссий производители стараются применять планетарный механизм:

Гидромеханическая коробка передач

В общем случае устройство и принцип работы гидромеханической коробки передач, созданной на базе планетарной системы можно описать так:

  • усилие передается на главную, или солнечную, шестерню (центральную, под номером 6);
  • вспомогательные сателлиты (обозначены цифрой 3) беспрепятственно вращаются по оси и
  • постоянно сцеплены зубчиками с центральной;
  • на этих сателлитах смонтировано водило (номер 4), сообщающееся с валом (номер 5);
  • вспомогательные элементы также сцеплены с коронной шестерней, обозначенной на рисунке цифрой 2.

Читайте также. АКПП CD4E: Устройство, основные проблемы трансмиссии

Водило, когда коронная шестеренка неподвижна, передает усилие на вал ведомый, когда она расторможена, то через сателлиты усилие идет на шестеренку номер 2. Сам вал остается недвижим. Непосредственно переключение происходит посредством ленточных механизмов и пакетов фрикционных муфт.

Плюсы и минусы гидромеханики

Резюмируя сказанное, можно сделать вывод: гидромеханическая АКПП – это узел, состоящий из гидротрансформатора, модуля механической коробки передач (в большинстве случаев планетарной), оснащенной пакетом фрикционов, системы гидравлического управления и контролирующего электронного блока.

Из плюсов такой связки:

  • удобство водителя: не нужно менять скорости вручную;
  • передача мощности от двигателя идет без «просадок» и рывков, что особенно важно при трогании.

Но есть и очевидные недостатки. Один из них – относительно малый, по сравнению с механикой, КПД, что обусловлено наличием гидротрансформатора.

Важно: в процессе циркуляции рабочего тела часть эффективности теряется: по данным исследований, КПД механической коробки около 98%, аналогичный показатель у «автомата» находится в пределах 86-90%.

Кроме того, есть и другие минусы:

  • высокая сложность узла, обилие компонентов, как следствие – относительно меньшая надежность (хотя гидромеханические КПП могут при должном уходе «ходить» десятилетиями, что успешно показывают японские, корейские и немецкие авто);
  • более высокая стоимость коробки, удорожающая и оснащенный ею автомобиль;
  • расход топлива в автомобиле с такой коробкой несколько выше;
  • малая ремонтопригодность, в сравнении с «механикой»; для успешного ремонта необходимо иметь сложное оборудование и обладать специальными знаниями.

Но плюсы гидромеханического переключения передачи все же перевешивают его недостатки, особенно для начинающих водителей, не обладающих достаточным опытом. Кроме того, в городском ритме движения, с постоянными пробками, гидромеханическая АКПП экономит и силы, и нервы водителя, которому не приходится производить бесконечные манипуляции «сцепление-передача» и двигаться на 1 скорости с полувыжатым сцеплением.

Устройство и принцип работы гидромеханической коробки передач

Устройство гидромеханической коробки передач АКПП Гидромеханическая коробка передач

Про автодвижок

Гидромеханическая коробка передач (ГМП) — это трансмиссия высокой проходимости с автоматическим управлением. ГМП поддерживает необходимую скорость автомобиля в разных режимах движения, упрощая процесс вождения. Подобные коробки используют в легковых автомобилях, грузовиках, автобусах, в тяжёлой технике мощностью до 1000 л. с. Гидромеханические коробки передач производят компании ZF, Borg Warner, Aisin, Mercedes-Benz, Voith, Honda, Allison, Caterpillar, Komatsu, БелАЗ и др.

Роль АКПП с гидромеханическим управлением

Для автомобиля и подобного ему транспортного средства трансмиссией является узел, который передает от двигателей к колесам крутящий момент. Так это выглядит в автомобилях со сцеплением, но их постепенно вытесняют с рынка АКПП. «Автоматы» сегодня ставят все чаще. В них не предусмотрено сцепления, а передачи переключаются автоматически. Гидромеханика помогает облегчить задачу смены передач во время движения. В классических коробках при управлении автомобилем выполняются следующие процессы:

  • отключение трансмиссии от двигателя в момент смены передач;
  • при изменении дорожных условий изменение величины крутящего момента.

Корпус гидротрансформатора вращается вместе с насосным колесом. Турбина с корпусом не связана (за исключением периода блокировки ГТ) – она соединена с валом коробки. Реактор при этом закреплен через обгонную муфту – она не дает ему проворачиваться под напором потока, когда разница в скорости вращения насосного и турбинного колес велика, но позволяет вращаться вместе с ними в одном направлении, когда автомобиль движется с постоянной скоростью и проскальзывание ГТ минимально. Так удается поднять КПД коробки.

Корпус гидротрансформатора вращается вместе с насосным колесом. Турбина с корпусом не связана (за исключением периода блокировки ГТ) – она соединена с валом коробки. Реактор при этом закреплен через обгонную муфту – она не дает ему проворачиваться под напором потока, когда разница в скорости вращения насосного и турбинного колес велика, но позволяет вращаться вместе с ними в одном направлении, когда автомобиль движется с постоянной скоростью и проскальзывание ГТ минимально. Так удается поднять КПД коробки.

Для выполнения этих действий и необходима гидромеханическая АКПП. Она одновременно выполняет функции сцепления и трансмиссии. Эту коробку специально придумали для использования в городских условиях, где постоянно выжимать сцепление может быть проблематично из-за частых остановок в пробках. Управляется автомобиль с гидромеханикой при помощи педалей тормоза и газа.

Перспективы гидромеханической коробки передач Гидромеханическая коробка ZF9HP Функции гидротрансформатора Муфта блокировки гидротрансформатора Электронная часть гидромеханической АКПП Электронная часть АКПП Электронная часть гидромеханической АКПП РКПП

Назначение комбинированной трансмиссии легкового авто

Образ жизни современных водителей существенно меняется и сегодня все больше требований предъявляются к созданию оптимальных комфортных условий во время вождения. Стандартные узлы автомобилей терпят существенные изменения, среди ярких примеров можно выделить комбинирование механической и гидравлической КП. Если говорить о гидромеханической трансмиссии и что это такое, первым делом стоит понять, в чем ее предназначение. Главное отличие заключается в плавном изменении вращающего движения. Облегченное управление позволило отказаться от использования сцепления, поскольку комбинированная КП отвечает за все процессы. При АКПП можно говорить о следующих ситуациях, касающихся управления авто:

Читайте также: Почему чернеет масло в двигателе. Причины, последствия

  • Во время переключения скоростей трансмиссия отключается от силового агрегата.
  • Если дорожные условия меняются, величина вращающего момента также будет менять свое значение.

Использование АКПП на авто позволяет получить несколько неоспоримых преимущества. Помимо автоматизации переключения скоростей стоит отметить также повышение эксплуатационных характеристик силового агрегата и коробки и улучшение проходимости транспортного средства в условиях бездорожья.

Гидравлическая коробка

Гидравлическая коробка автомат

Разновидности гидромеханики

В состав этой трансмиссии обязательно входит гидротрансформатор, составляющие системы управления и механическая коробка. Она может быть одной из нескольких систем:

  • многовальной;
  • двухвальной;
  • трехвальной;
  • планетарной.

Последняя разновидность коробки наиболее распространена. Она часто устанавливается на легковые автомобили, так как не имеет высокой металлоемкости. Она отличается меньшим шумом при работе, высоким сроком службы и компактностью.

Вальные механизмы можно встретить на грузовиках и автобусах. В них для переключения передач предусмотрены многодисковые муфты, которые помещены в масло. Первая передача и задний ход включаются при помощи зубчатой муфты. Благодаря особому устройству вальных коробок переключение скоростей происходит за счет работы коленчатого вала. Скорость движения при этом не снимается, крутящий момент и мощность не разрываются.

Основное назначение АКПП

Основное назначение АКПП

Гидромеханическая коробка MGPA Гидромеханическая коробка с планетарным механизмом ремонт гидромеханической коробки передач

Характеристика

Те водители, которые не хотят работать со сцеплением, отдают предпочтение именно этой трансмиссии. Гидромеханическая коробка передач выполняет сразу несколько функций. Она совмещает в себе сцепление и классическую коробку.

гидромеханическая коробка передач принцип работы

Переключение передач здесь производится автоматически либо полуавтоматически. Таким же образом устроена и гидромеханическая коробка передач погрузчика. Во время движения водитель не задействует педаль-сцепление. Все, что нужно – это акселератор и тормоз.

Функции гидротрансформатора

Гидротрансформатор выполняет функции сцепления в современных АКПП. Благодаря этому узлу автомобиль двигается с места плавно, без рывков. Динамические нагрузки при этом снижаются, что помогает эксплуатировать двигатель в щадящем режиме, повышая его долговечность. При применении гидротрансформатора части трансмиссии служат гораздо дольше. Водитель из-за снижения количества передач утомляется меньше. Гидротрансформаторы рекомендуется применять на внедорожниках, так как с их помощью можно увеличить проходимость автомобиля в тяжелых условиях – по снегу или песку.

Важно! В России также стоит выбирать трансмиссии с этим узлом, так как в зимнее время специальная техника часто не успевает прочищать дороги. Благодаря гидротрансформатору создается устойчивая сила тяги с небольшой скоростью вращения ведущих колес, что повышает их сцепление с дорожным покрытием.

Гидротрансформатор

Гидротрансформатор

Недостатки автомата

Разница между АКПП и вариатором позволяет выделить следующие минусы классического автомата:

  • плохая динамика разгона;
  • высокий расход топлива, так как много энергии теряется в передаче усилия через трансмиссионную жидкость;
  • в движении заметны толчки, при этом чем изношенней коробка, тем сильнее рывки.

При выборе автомат или вариатор следует учитывать, что АКПП требует заливать объем масла, значительно больший чем CVT. Заменять трансмиссионную жидкость необходимо регулярно, что вносит определенные финансовые расходы на содержание автомата. При подгорании фрикционов весь объем трансмиссионки также подлежит замене.

Устройство гидротрансформатора

Размещают гидротрансформатор между двигателем и механической частью коробки. Он представляет собой соединенные между собой диски с лопастями. Первым идет насосное колесо, которое является ведущим. Оно связывает двигатель и трансформатор. Турбинное является ведомым, оно контактирует с первичным валом. За усиление крутящего момента отвечает реакторное. Турбины практически утопают в масле (погружены в него на три четверти). Их прикрывает корпус, защищающий от попадания в масло посторонних частиц. Во время работы турбины к насосному диску направляется усилие вращающего момента двигателя. Одновременно на турбинный диск направляется под давлением поток масла. Его раскручивает реакторное колесо, располагающееся в центральной части. Возникшее усилие передается на вал КПП. Работает гидротрансформатор за счет особой циркуляции масла, которое попадает в него с внешней части насосного диска, затем движется на турбинное колесо и возвращается через центральную часть этого узла. Завершается цикл циркуляции масла на насосном диске.Замена крутящего момента в гидротрансформаторе происходит автоматически по мере возрастания нагрузки двигателя. Этот узел отправляет на коробку силу крутящего момента, где при помощи фрикционов происходит включение передач. Нужное передаточное число определяется трансформатором автоматически, в зависимости от его значения изменяется напор циркулирующего масла.

Гидротрансформатор акпп в разрезе

Гидротрансформатор акпп в разрезе

Читайте также: Маховик двигателя: назначение, принцип работы и разновидности

Трансмиссия Гидромеханическая коробка передач Гидромеханическая коробка передач Особенности устройства гидромеханической АКПП Особенности устройства гидромеханической АКПП Особенности устройства гидромеханической АКПП Гидромеханическая коробка передач Гидромеханическая коробка передач Гидромеханическая коробка передач

Наиболее часто встречаемые неисправности CVT

Вариатор более требователен к маслу, которое следует менять точно в срок и только на то, которое рекомендовано автопроизводителем. Самостоятельный выбор смазки может быстро вывести агрегат из строя. Наиболее часто встречаемыми поломками являются:

  • износ масляного насоса;
  • пробуксовывание ремня;
  • чрезмерный износ поверхностей;
  • разрыв ремня, который вызывает масштабные повреждения узла;
  • задиры валов.

Особенности устройства гидромеханической АКПП

Поврежденный вариатор

Выбирая, что лучше вариатор или автоматическая коробка передач ,с точки зрения наиболее часто встречаемых поломок, выбор стоит сделать в сторону классической АКПП. Вызвано это меньшим количеством неисправностей, способных вызвать полное обездвиживание машины. Также немаловажным нюансом является малое количество специалистов, способных качественно выполнить ремонт вариатора.

Планетарный механизм

В большинстве современных АКПП гидротрансформатор действует в паре с планетарной системой. Она занимается передачей крутящего момента к фрикционным муфтам. В самом простом варианте усилие направляется на центральную шестерню (солнечную). Два дополнительных сателлита (вспомогательные шестерни) находятся в постоянной сцепке с центральной шестерней благодаря нанесенным на эти элементы зубчикам. Сателлиты не фиксируются, а свободно вращаются вокруг своих осей. Механизм шестеренок находится внутри коронного колеса, которое в зависимости от включенной передачи фиксируется или приходит в движение. В момент фиксации коронной шестерни начинает двигаться ведомый вал (на него передается усилие). В противном случае сателлиты передают момент на коронную шестерню, оставляя ведомый вал в неподвижном состоянии. Для переключения передач в планетарные АКПП устанавливаются фрикционные муфты. Каждая из них выглядит как несколько дисков, представляющих собой тонкие пластины из гладкого металла. Каждая пластинка покрыта специальным фрикционным составом, предотвращающим ее износ. На части их можно найти шлицы. Между муфтами расположены прокладки. Прижимаются друг к другу они при помощи гидравлического поршня, функционирующего при подаче рабочей жидкости. При возрастании в нем давления фрикционы плотно смыкаются, становясь почти единым целым. После падения давления жидкости в гидравлическом поршне фрикционные диски возвращаются на место с помощью пружины. Работа фрикционов тесно связана с функционированием тормозных и планетарных механизмов. На эти моменты передаются команды системы управления КПП и крутящий момент двигателя. Без их участия не производится торможение двигателем и запуск на буксире. Механический узел действует слаженно и четко.

планетарная система

планетарная система

Важно! В нейтральном положении выключаются фрикционы и тормозные механизмы. При разгоне и переключении передач фрикционы начинают действовать, а планетарные системы вращаются синхронно.

Требования

Фрикционные накладки автоматической трансмиссии должны соответствовать следующим требованиям:

  • Износоустойчивость.
  • Высокая теплопроводность (должны хорошо впитывать масло).
  • Теплостойкость (качественные фрикционы работают при температуре до 200 градусов Цельсия без изменения свойств и характеристик).
  • Динамические качества. Пакет дисков должен передавать крутящий момент при модулируемом проскальзывании.
  • Статические качества (высокий порог проскальзывания фрикционов).

Электронная часть гидромеханической АКПП

Электронное управление необходимо для точности переключения передач в современных АКПП. Сейчас практически нельзя встретить трансмиссии, работа которых бы не поддерживалась электронными комплектующими. Они отвечают за:

  • Функционирование АКПП. В гидромеханике эта система состоит из регуляторов давления и насосов.
  • Сбор информации о действующей программе управления.
  • Выработку импульсов управления.
  • Исполнение команд при переключении передач.
  • За защиту двигателя и трансмиссии в случае опасной ситуации.
  • За ручное управление, за все операции отвечает блок, а управление происходит за счет рычага.

Электронная часть гидромеханической АКПП

Электронная часть гидромеханической АКПП

Минусы вариатора

Перечень того, чем отличается вариатор от АКПП в худшую строну:

  • очень часто качественный ремонт могут выполнить только официальные дилеры, что повышает стоимость, а также усложняет проведение технического обслуживания в случае провинциального города;
  • замена ремня имеет высокую стоимость;
  • электроника сложней в отличие от автоматической коробки передач, поэтому не так много специалистов берутся за ее ремонт и перепрошивку.

Во время эксплуатации разрешено заливать масло, только предназначенное для конкретной модели автомобиля. Достать его в небольших городах является проблемой. Заливание схожего по свойствам масла может вызвать усиленный износ и серьезные неисправности.

Сильные и слабые стороны гидромеханики

Гидромеханическая коробка представляет собой последовательное соединение трансформатора, планетарного узла с фрикционами гидравлической системы управления. Ее основное достоинство – отсутствие необходимости водителю переключать передачи вручную. Электроника делает это точно, благодаря чему отсутствует дискомфорт при движении, а двигатель не подвергается перегрузкам. Их отсутствие помогает сохранить его в целости на долгое время. При начале движения передача мощности также происходит без прерывания и рывков, что делает гидромеханику более совершенной, превосходящей по своим характеристикам механические коробки передач. Не зря их используют не только в автомобилестроении, но и устанавливают на танки (в Америке и Германии).

Важно! Если вы выбираете автомобиль, на котором преимущественно будете двигаться по городу, то стоит выбирать именно гидромеханическую АКПП. С ее помощью у вас не возникнет неудобств при остановках в пробках или на светофорах.

Слабой частью такой АКПП является и гидротрансформатор

Слабой частью такой АКПП является гидротрансформатор

Недостатком такого механизма является его высокая стоимость и техническая сложность. При переключении передач можно заметить потерю производительности за счет пробуксовки фрикционов и тормозных лент. Слабой частью такой АКПП является и гидротрансформатор, из-за которого теряется крутящий момент. Несмотря на явные преимущества эффективность гидромеханики по результатам замеров составляет 86%, тогда как у обычной коробки она достигает 98%. Еще один недостаток – необходимость устанавливать системы подпитки охлаждения гидроагрегата. Они занимают место под капотом, из-за чего моторно-трансмиссионный отсек имеет большие габариты. Также автомобили с установленной гидромеханикой нельзя завести путем толкания или перемещения его на тросе. Для этой разновидности коробки, как и во всех автоматах, характерно отсутствие возможности регулировать потребление топлива. Описанный вариант гидромеханической АКПП является одним из самых примитивных. Сегодня разрабатываются более совершенные трансмиссии, которые устанавливают на легковые автомобили, выпущенные в последние годы. Гидромеханикой рекомендуется пользоваться тем, кто недавно сел за руль. Для новичка она незаменима тем, что самостоятельно переключать передачи нет необходимости.

Читайте также: Разбираемся в особенностях турбодизеля Toyota 1.4 D-4D (1ND-TV)

Как продлить ресурс

Чтобы увеличить срок эксплуатации гидромеханической коробки, необходимо следить за уровнем масла. При его недостаточном количестве возникает перегрев коробки. Рабочая температура не должна превышать 90 градусов. Современные автомобили оснащаются датчиком давления масла. Его загорелась контрольная лампа, не стоит игнорировать ее. В дальнейшем это может спровоцировать поломку гидротрансформатора.

гидромеханическая коробка передач погрузчика

Также не следует переключать передачи без выжима педали тормоза. Коробка примет на себя весь удар, особенно если переключиться с первой на заднюю без предварительного оттормаживания. На ходу, если это затяжной спуск, не рекомендуется включать «нейтралку». Это также существенно снижает ресурс гидравлического трансформатора и рабочих муфт. В остальном же необходимо придерживаться регламента замены масла и фильтров. Срок эксплуатации данной КПП составляет порядка 350 тысяч километров.

Ремонт

Можно ли восстановить такую трансмиссию, как коробка автомат? Ремонт фрикционов подразумевает полную замену пакета дисков. Восстанавливать их нет смысла (то же самое, что и ремонтировать тормозные колодки). Какая на фрикционы АКПП цена? Стоимость нового пакета начинается от 8 тысяч рублей, и это без учета работ. Такая услуга, как замена фрикционов АКПП, стоит в Москве от 10 тысяч рублей.

пакет фрикционов акпп

Причем меняются они не по отдельности, а в сборе, целым пакетом. Узнав стоимость работ, вы поймете, почему так важно вовремя менять трансмиссионную жидкость. АТФ-масло хоть и стоит на порядок дороже обычного, однако эту цену не сравнить с ремонтом сгоревшей коробки. Если вовремя обслуживается коробка автомат, ремонт ей не понадобится на протяжении двухсот тысяч километров.

Гидромеханическая коробка передач: понятие, принцип работы и устройство ГМП

В автомобилестроении используют разные виды автоматов, но наиболее востребованы классические ГМП – трансмиссионные агрегаты с гидромеханическими передачами. Но в чем же особенности конструкции и применения этих механизмов, что привело к такой их популярности?

Что такое гидромеханическая коробка передач

Чтобы оценить преимущества трансмиссии гидромеханического типа нужно представлять, что это такое, исходя из назначения и принципа действия.

Коробка с ГМП – сложный механизм, в котором совмещены функции сцепления с переключением скоростей. Это передаточное звено привода обеспечивает автоматический выбор необходимого передаточного отношения, исходя из текущих условий движения, без непосредственного участия водителя, в рамках установленного режима.

Гидромеханическая коробка передач

Принцип работы и устройство ГМП

Принцип работы классической гидромеханической коробки передач в чем-то и схож с механической трансмиссией, но есть и отличия из-за особенностей устройства ГМП. При управлении автомобилем с МКПП водитель вынужден совершать несколько последовательных манипуляций:

  1. Рассоединять двигатель с трансмиссией, выжимая педаль сцепления.
  2. Переводить ручкой переключения скоростей коробку в нужную позицию по передаточному отношению.
  3. Отпускать сцепление, возвращая связь мотора с трансмиссией.

Эти действия повторяют, если нужно включить другую скорость.

В автомате водитель устанавливает режим движения вперед при выжатой педали тормоза, а после освобождения тормозного устройства автомат с ГМП самостоятельно переключает передачи, не отсоединяя двигатель от привода, учитывая особенности устройства АКПП.

МКПП

Гидрокоробка состоит из 6 узлов:

  1. Гидротрансформатор. Заменяет сцепление, связывая двигатель с трансмиссией.
  2. Пакет фрикционов с дисками, тормозными лентами. Обеспечивает включение нужной передачи при разных сочетаниях этих устройств.
  3. Планетарный ряд. Передает вращение на последующий привод.
  4. Маслонасос. Создает необходимое давление трансмиссионной жидкости в системе ГМП.
  5. Гидроблок. Распределяет масло по каналам для включения определенных скоростей.
  6. Электронный блок управления. Командует ГМП, с учетом текущих условий движения.

Гидроавтомат может работать в 4 режимах:

  1. Драйв – для движения вперед.
  2. Реверс – обратный ход.
  3. Паркинг – для постановки машины на стоянку.
  4. Нейтраль – отсоединяет коробку от мотора.

Гидромеханическая коробка передач: понятие, принцип работы и устройство ГМП

В некоторых моделях конструкторами реализованы режимы Спортивный, Овердрайв и другие, с возможностью включения пониженных или повышенных передач, имитацией ручного переключения и другими функциями.

Современные гидромеханические АКПП: разновидности и особенности

Гидромеханическая коробка – сложный механизм. Каждая конкретная модель автомата с ГМП рассчитана на определенные условия эксплуатации и характеристики автомобильной техники.

Виды автоматических трансмиссий:

  • многовальные;
  • двухвальные;
  • трехвальные;
  • с планетарным редуктором.

Системы с несколькими валами более востребованы для грузовой автомобильной техники и автобусов, с использованием в конструкции:

  • многодисковых муфт, которые работают в масляной ванне;
  • зубчатой муфты для включения первой скорости и реверсного режима.

Эти коробки совмещают в себе несколько параллельных и совмещенных механизмов, где за четные передачи отвечает один ряд, за нечетные второй. В работе находится первый узел, пока в это время включается нужная скорость на втором.

Легковые машины чаще оснащают автоматами ГМП планетарного типа. Эти механизмы компактны, обеспечивают плавную работу даже при длительном сроке эксплуатации.

Функции и устройство гидротрансформатора

Планетарная коробка передач

Планетарная передача передает вращение на фрикционные муфты. Применяют разные варианты конструкции этого редуктора. Основа самого простого механизма – центральная солнечная шестерня, пребывающая в зацеплении с сателлитами (вспомогательными зубчатыми колесами). Коронная шестерня передает вращение ведомому валу, воспринимающему усилие.

Переключают скорости фрикционные пакеты. Диски покрыты специальным составом, обеспечивающим сцепление разных элементов. Детали сдавливает гидравлический поршень, срабатывающий от давления трансмиссионной жидкости, распределяемой гидроблоком.

При отключении напора, пружина разжимает пакет, выключая передачу. Также конструкция включает тормозные устройства для сцепления и передачи вращающего момента.

Планетарная коробка передач Фрикционы

ЭБУ – электронный блок управления АКПП

Управляет трансмиссией с ГМП электроника. Электронный блок подает команды для срабатывания соответствующих электромагнитных клапанов гидроблока (соленоидов). При управлении коробкой автоматика получает исходные данные из датчиков, регистрирующих обороты, нагрузку на трансмиссионный механизм и другие параметры.

ЭБУ программируют, используя программное обеспечение с соответствующими настройками работы трансмиссионного агрегата.

Преимущества и недостатки гидромеханики

Преимущества гидромеханического автомата:

Источник https://motoran.ru/transmisii/gidromehanicheskaya-korobka-peredach

Источник https://toyota-chr2.ru/sovety/gidromehanicheskaya-korobka-peredach.html

Источник https://akpp.guru/ustrojstvo/gmp

Гидромеханическая передача

Гидромеханическая передача (рис. 71) упрощает управление автобусом, особенно в условиях напряженного городского движения с частыми остановками. Переключение ГМП осуществляется автоматически в зависимости от скорости движения автобуса и степени нажатия на педаль акселератора. Это облегчает труд водителя, повышает безопасность и комфортабельность движения, обеспечивает запуск двигателя буксировкой автобуса, торможение двигателем на любой передаче, а также движение накатом. Гидромеханическая передача соединена с двигателем карданной передачей, представляет собой сложную конструкцию, требующую серьезных знаний по ее эксплуатации и техническому обслуживанию.

Для лучшего понимания работы ГМП напомним основные свойства жидкости: текучесть и несжимаемость. Так же, как и твердые тела, жидкость может передавать механическую энергию. В коробках передач автомобилей масло необходимо для смазывания подшипников и деталей. В ГМП роль масла возрастает. Помимо смазывания, масло используется для охлаждения, включения, переключения передач и для передачи крутящего момента двигателя. Масло в ГМП называют рабочей жидкостью.

Рис. 71. Общий вид гидромеханической передачи:
1 — рычаг привода центробежного регулятора; 2 — корпус поршня включения заднего хода; 3 — крышка механизма переключения передач; 4 — трубка клапана блокировки; 5 — крышка соединительной панели механизма гидравлического переключателя; 6 — переключатель периферийных золотников с крышкой в сборе; 7 — картер гидротрансформатора; 8 — клапан блокировки в сборе; 9 — корпус опоры гидротрансформатора; 10 — клапан слива; 11 — ведущий фланец; 12 — кронштейн передней опоры; 13 — пробка редукционного клапана; 14 — картер коробки передач; 1S — крышка смотрового люка; 16 — поддон; 17 — трубка поддона; 18 — датчик привода спидометра; 19 — магнитная пробка; 20 — ведомый фланец; 21 — кронштейн задней опоры

У автобуса ЛиАЗ-5256 ГМП состоит из гидротрансформатора, механической трехступенчатой коробки передач, масляной системы, системы управления, системы охлаждения и гидродинамического замедлителя.

Принцип работы гидротрансформатора. Рассмотрим модель: вытекающая из бака под действием напора струя жидкости ударяет в лопасти колеса и вращает его. Энергия напора жидкости превращается в кинетическую энергию струи жидкости, которая сообщается колесу и расходуется на привод рабочего механизма. Если.представить себе обратную картину — лопастное колесо вращается от какого-то постороннего двигателя, тогда, наоборот, колесо будет сообщать кинетическую энергию жидкости, находящейся на лопатках колеса.

Гидротрансформатор автобуса ЛиАЗ-5256 состоит из колеса 1 насоса (рис. 72, а), колеса 2 турбины и колес 3 реактора (статора). Колеса реактора установлены на реактивном валу на муфтах свободного хода, поэтому гидротрансформатор может работать в режиме гидромуфты.

Колесо насоса является рабочим колесом, между внутренним и наружным торцом которого отлиты рабочие лопасти; с наружной стороны колеса — вентиляционные лопасти, служащие для обдува гидротрансформатора. Колесо насоса соединено с насосным валом и двигателем. Колесо турбины состоит из рабочего колеса с лопастями, соединенного с турбинным валом и ведущим валом коробки передач. Реактор (статор) состоит из двух лопастных рабочих колес, соединенных муфтами свободного хода, которые подобно муфте включения стартера дают возможность реактору вращаться в одну сторону свободно, а в другую нет.

Внутренняя полость гидротрансформатора заполняется рабочей жидкостью. При работе двигателя вращаются колесо насоса и жидкость, помещенная внутри. Лопатки колеса передают жидкости кинетическую энергию, полученную от двигателя. Жидкость начинает перемещаться от меньшего радиуса колеса к большему. Жидкость с лопаток колеса насоса попадает на лопатки колеса турбины и отдает им полученную кинетическую энергию. Жидкость с лопаток колеса турбины поступает на лопатки колеса реактора. Лопатки колеса реактора изменяют направление потока жидкости таким образом, чтобы он попадал на лопатки колеса насоса под определенным углом. Благодаря наличию колеса реактора происходит изменение величины крутящего момента на колесе турбины.

Рис. 72. Гидротрансформатор

В момент трогания автобуса колесо турбины неподвижно, на него действует наибольшее давление жидкости и происходит наибольшее увеличение крутящего момента. При разгоне автобуса по мере увеличения оборотов колеса турбины крутящий момент на нем уменьшается и при определенном передаточном отношении становится равным крутящему моменту на колесе насоса. Давление жидкости на лопатки реактора меняет свое направление на противоположное и вызывает расклинивание муфты свободного хода. Реакторы начинают вращение в одном направлении с колесом турбины и колесом насоса в общем потоке жидкости.

Гидротрансформатор, как уже отмечалось выше, работает в режиме гидромуфты. Крутящий момент на колесе турбины в этом режиме несколько ниже, чем на колесе насоса, так как между колесами отсутствует жесткая связь. Для увеличения коэффициента полезного действия гидротрансформатора на прямой передаче колесо насоса и колесо турбины блокируются передним фрикционом.

Примерная форма лопаток колеса насоса и колеса турбины гидротрансформатора и крутящие моменты показаны на рис. 72, б. Стрелками обозначен путь жидкости и направление действия крутящего момента, передаваемого жидкостью на лопатки колес. Изменение величины крутящего момента на турбинном колесе происходит плавно и бесступенчато. Изменение крутящего момента гидротрансформатором недостаточно для различных условий движения автобуса, поэтому он работает с двух- (автобус ЛиАЗ-677М) или трехступенчатой (автобус ЛиАЗ-5256) коробкой передач.

Механическая трехступенчатая коробка передач. Картер механической коробки передач передним фланцем соединен с картером гидротрансформатора. На задней стенке картера устанавливается статор замедлителя. Сверху на картере установлен корпус переключателя расположены ведущий вал с шестернями, ведомый вал с шестерней, первый и второй промежуточные валы. На первом промежуточном валу на шлицах установлены фрикцион первой и второй передач, ведущая шестерня и ротор замедлителя. По обе стороны фрикциона расположены шестерни 15 и 18 первой и второй передач. На втором промежуточном валу установлены двойной фрикцион 6 третьей передачи и фрикцион передачи заднего хода, а также ведущая шестерня. По обе стороны фрикциона расположены шестерни третьей передачи и шестерня передачи заднего хода.

В первом и втором промежуточных валах имеются отверстия для подвода масла к двойным фрикционам. Двойные фрикционы обеспечивают переключение передач и передачу крутящего момента через соответствующие шестерни к ведомому валу.

Двойной фрикцион состоит из ведущего барабана (рис. 74), образующего два гидроцилиндра, поршней ведомых и ведущих дисков и возвратных пружин, опорных колец 9. На поверхности барабана имеются площадки для установки периферийных клапанов 5, включающих и выключающих фрикционы. Масло к клапанам постоянно подведено от главной магистрали. Кольцо обеспечивает одновременное перемещение периферийных золотников. При перемещении периферийных золотников от нейтрального положения вправо или влево масло под давлением поступает в цилиндр под поршень соответствующего фрикциона. Поршень, перемещаясь, сжимает пакет дисков. Крутящий момент передается от ступицы дисков на шестерню и далее на промежуточный вал.

Масляный поддон с литыми ребрами для охлаждения закрывает снизу картер механической коробки передач и служит резервуаром для масла. В днище поддона имеются отверстия, через которые осуществляется доступ к маслоприемникам и производится смена фильтрующих элементов. Масло сливается через отверстие, закрываемое магнитной пробкой.

Гидродинамический замедлитель состоит из статора (рис. 75), установленного в задней стенке картера механической коробки передач, ротора на заднем конце первого промежуточного вала. В статоре имеются масляные каналы, размешены гильза главного золотника и шестерня привода спидометра. Снизу к статору прикреплен корпус клапана управления замедлителем. К крышке замедлителя прикреплен корпус силового регулятора с эксцентриком. Управление гидромеханическим замедлителем осуществляется краном управления или пневматическими клапанами, расположенными в кабине водителя.

Рис. 73. Механическая трухступенчатая коробка передач

Рис. 74. Промежуточный вал с двойным фрикционом

Рис. 75. Гидромеханический замедлитель с силовым и центробежным регуляторами и приводом главного золотника:
1 — статор; 2 — ротор; 3 — главный золотник; 4 — гильза главного золотника; 5 — крышка замедлителя; 6 — шестигранная головка толкателя; 7 — регулировочный винт; 8, 13 — крышки; 9 — главный рычаг силового регулятора; 10 — чашка центробежного регулятора; 11 — шарнк; 12 — водило центробежного регулятора; 14 — клапан управления замедлителем

Масляная система (рис. 76).. Система имеет два масляных насоса: большой и малый. Привод большого насоса осуществляется от ступицы насосного колеса, малого — от переднего конца первого промежуточного вала, постоянно вращающегося при движении автобуса, что позволяет обеспечивать пуск двигателя буксировкой автобуса. Масло из поддона через маслоприемники поступает к большому масляному насосу, далее через обратный клапан в главную магистраль и к регулятору давления масла. Давление масла в магистрали поддерживается регулятором режима давления. На рабочих режимах ГМП давление масла составляет 395—685 кПа. Подает масло в главную магистраль и малый насос через фильтр тонкой очистки, запорный шариковый клапан. Избыток масла через регулятор давления поступает на слив во всасывающую полость большого насоса, который работает на себя. Как только подача малым масляным насосом будет достаточна для питания масляной системы ГМП и поддержания в ней рабочего давления, происходит автоматическое отключение большого масляного насоса от главной магистрали. Обратный клапан закрывается и питание всей системы ГМП обеспечивается малым масляным насосом. Регулятор давления управляет подпиткой гидротрансформатора. Масло в гидротрансформатор поступает под давлением не менее 372 кПа.

Рис. 76. Принципиальная схема масляной системы:
/ — вход воздуха из крана управления замедлителем; II — привод от центробежного регулятора; III— привод от переключателя периферийных золотников; IV— привод от педали подачи топлива; 1 — замедлитель; 2, 19 — малый и большой масляные насосы; 3 — фильтр тонкой очистки масла; 4 — обратный клапан; 5 — предохранительный клапан; б — клапан блокировки; 7 — регулятор давления масляной магистрали; 8 — регулятор давления гидротрансформатора; 9 — фрикцион блокировки; 10 — гидротрансформатор; 11 — включатель блокировки; 12 — выключатель третьей передачи; 13 — включатель второй передачи; 14 — главный золотник; 15 — кольцо переключателя; 16 — золотник периферийных клапанов; 17 — регулятор режима давления; 18 — обратный клапан; 20 — маслоприемник; 21 — клапан управления замедлителем (тормозной режим); 22 — клапан управления замедлителем (тяговый режим); 23 — теплообменник

Из главной магистрали масло поступает к клапану блокировки, периферийным золотникам двойных фрикционов, главному золотнику, клапану управления замедлителем, в механическую коробку передач. Из гидротрансформатора масло поступает через регулятор давления гидротрансформатора, через клапан управления замедлителем к теплообменнику и далее через тот же клапан управления замедлителем в поддон ГМП. Регулятор давления поддерживает в полости гидротрансформатора избыточное давление масла, необходимое для включения фрикциона блокировки. Регулятор открывает слив масла при давлении 294 кПа и поддерживает расход масла через гидротрансформатор в пределах 26—40 л/мин. При меньшем давлении регулятор закрывает слив из гидротрансформатора. Через клапан масло поступает из главной магистрали в полость фрикциона блокировки. По каналам в механической коробке передач, статора замедлителя масло поступает к главному золотнику. По мере увеличения скорости движения автобуса главный золотник перемещается и подает масло к включателю третьей передачи и далее к включателю блокировки.

Включение гидродинамического замедлителя происходит при подаче воздуха от крана управления, при этом золотник клапана перемещается, занимая определенные (уравновешенные) положения, при которых происходит регулируемое наполнение рабочей полости замедлителя маслом, чем и достигается эффективность замедления. При выключении замедлителя его рабочая полость соединяется со сливом.

Масло в ГМП охлаждается в водомасляном теплообменнике, который установлен в автобусе и включен в систему охлаждения двигателя. Допустимый предел температур масла на сливе из гидротрансформатора или замедлителя не должен превышать 130 °С. Для контроля теплового режима ГМП предусмотрены датчики температуры масла в поддоне и аварийного перегрева масла на сливе из гидротрансформатора и замедлителя. На щитке приборов кабины водителя установлены указатель температуры масла и сигнальная лампа перегрева.

Система управления. Она обеспечивает автоматическое переключение передач переднего хода в зависимости от скорости движения автобуса и положения педали подачи топлива, а также включение и управление гидродинамическим замедлителем. Принудительно может быть включена понижающая передача для определенных условий движения и передача заднего хода. Узлы системы управления установлены как на гидропередаче, так и в кабине автобуса. На гидропередаче имеются: центробежный и силовой регуляторы и их приводы, главный золотник, включатель блокировки, включатели третьей и второй передач, переключатели периферийных золотников, периферийные золотники (см. рис. 76) и их приводы, клапан 6 блокировки и клапан управления замедлителем.

В кабине автобуса установлены: кран управления замедлителем, контроллер (рис. 77), компенсатор хода в приводе силового регулятора. Положение контроллера обеспечивает режим работы гидромеханической передачи: N — нейтраль, все элементы системы управления отключаются от электропитания; 2А — происходит последовательное автоматическое включение первой, второй и третьей передач с блокировкой гидротрансформатора; ЗА — происходит последовательное автоматическое включение первой, второй передач и второй с блокировкой гидротрансформатора; 1 — принудительно включается первая передача; R — включается передача заднего хода. При нейтральном положении все фрикционы выключены, ведущий вал, промежуточные валы второй (рис. 78) и первый, а также ведомый вал разъединены. Для движения автобуса с автоматическим переключением передач на контроллере устанавливаются положения. При установке первого положения на контроллере через замкнутые контакты микропереключателей, включателей третьей и второй передач ток, включающий первую передачу, поступает к электромагниту.

Первая передача включается фрикционом. Шестерня жестко соединена с первым промежуточным валом. Мощность от двигателя передается через насосное и турбинное колеса гидротрансформатора, ведущий вал, шестерни, фрикцион, первый промежуточный вал, шестерни к ведомому валу. При увеличении скорости движения центробежный регулятор начинает передвигать главный золотник, который соединяет главную масляную магистраль с каналом включателя первой передачи. Срабатывает микропереключатель. Электромагнит первой передачи выключается, включается электромагнит, включающий вторую передачу. Вторая передача включается фрикционом, шестерня жестко соединена с первым промежуточным валом. Мощность от двигателя передается через колеса гидротрансформатора, ведущий вал, шестерни, фрикцион, первый промежуточный вал, шестерни к ведомому валу.

Рис. 77. Клавишный контроллер ГМП

Рис. 78. Схема работы гидромеханической передачи автобуса ЛиАЗ-5256: / — первая передача; II — вторая передача; III — третья передача; IV — третья передача с блокированием гидротрансформатора; V — передача заднего хода; VI — работа гидромеханического замедлителя: 1 — колесо насоса гидротрансформатора; 2 — колесо турбины гидротрансформатора; 3 — колесо реактора (статора); 4 — реактивный вал (вал реактора); 5 — передний фрикцион; 6 — муфта свободного хода; 7, 8, 15. 17. 20 — шестерни; 9 — ведущий вал; 10 — второй промежуточный вал; 11 — шестерня третьей передачи; 12 — фрикцион третьей передачи; 13 — фрикцион передачи заднего хода; 14 — шестерня передачи заднего хода; 16, 21 — шестерня первой передачи; 18 — ведомый вал; 19 — ротор замедлителя; 22 — фрикцион первой передачи; 23 — фрикцион второй передачи; 24 — шестерня второй передачи; 25 — первый промежуточный вал

Третья передача включается фрикционом. Шестерня жестко соединена с вторым промежуточным валом. Мощность от двигателя передается через колеса гидротрансформатора, ведущий вал, шестерни, фрикцион, второй промежуточный вал, шестерни к ведомому валу.

При последующем увеличении скорости автобуса главный золотник соединяет с главной масляной магистралью канал включателя блокировки. Срабатывает микропереключатель и включается электромагнит клапана блокировки, при этом третья передача остается включенной, а фрикцион гидротрансформатора блокируется. Третья прямая передача с блокированием гидротрансформатора включается фрикционами . Мощность от двигателя передается через фрикцион 5, ведущий вал, шестерни, фрикцион, второй промежуточный вал, шестерни к ведомому валу.

Передача заднего хода включается фрикционом. Шестерня жестко соединена с вторым промежуточным валом. Мощность от двигателя передается через колеса гидротрансформатора, ведущий вал, шестерни, фрикцион, второй промежуточный вал, шестерни к ведомому валу.

При установке второго положения на контроллере происходит последовательное автоматическое включение первой и второй передач с блокировкой гидротрансформатора.

гидротрансформатор

Основным неудобством при использовании механических ступенчатых коробок передач является то, что водителю для переключения передач постоянно приходится нажимать на педаль сцепления и перемещать рычаг переключения передач. Это требует от него затрат значительных физических сил, особенно в условиях городского движения или при управлении автомобилем, работающим с частыми остановками. Для устранения таких неудобств и облегчения работы водителя на легковых, грузовых автомобилях и автобусах все более широкое применение получают гидромеханические коробки передач. Они выполняют одновременно функции сцепления и коробки передач с автоматическим или полуавтоматическим переключением передач. При гидромеханической коробке передач управление движением автомобиля осуществляется педалью подачи топлива и при необходимости тормозной педалью.

Гидромеханическая коробка передач состоит из гидротрансформатора и механической коробки передач. При этом механическая коробка передач может быть двух-, трех- или многовальной, а также планетарной.

Гидромеханические коробки с вальными механическими коробками передач применяются главным образом на грузовых автомобилях и автобусах. Для переключения передач в таких коробках используются многодисковые муфты (фрикционы), работающие в масле, а иногда – для включения низшей передачи и заднего хода – зубчатая муфта. Переключение передач фрикционами происходит без снижения скорости вращения коленчатого вала двигателя, т.е. бесступенчато – без разрыва передаваемых мощности и крутящего момента.

Гидромеханические коробки с планетарными механическими коробками передач получили наибольшее распространение и применяются на легковых, грузовых автомобилях и в автобусах.

Их преимущества: компактность конструкции, меньшие металлоемкость и шумность, больший срок службы.

К недостаткам относятся сложность конструкции, высокая стоимость, пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидротрансформатор

Гидротрансформатор (рисунок 1) представляет собой гидравлический механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками – насосного (ведущего), турбинного (ведомого) и реактора. Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены турбинное колесо 2, соединенное с первичным валом 5 коробки передач, и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

гидротрансформатор

Рисунок 1 – Гидротрансформатор

а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

При работающем двигателе насосное колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу, обеспечивая передачу крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места. В этом случае реактор неподвижен, так как заторможен муфтой свободного хода. По мере разгона автомобиля увеличиваются скорости вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается, и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты. Таким образом происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и ведущими колесами автомобиля. Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при увеличении сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине и, следовательно, на ведущих колесах автомобиля.

Планетарная коробка передач

Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме (рисунок 2) солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся в зацеплении с коронной шестерней 2, имеющей внутренние зубья.

планетарный механизм

Рисунок 2 – Планетарный механизм

1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

На рисунке 3 приведена схема гидромеханической коробки передач, которая состоит из гидротрансформатора, трехвальной двухступенчатой механической коробки передач и системы управления. Наличие двухступенчатой механической коробки передач увеличивает диапазон регулирования крутящего момента.

схема гидромеханической коробки передач

Рисунок 3 – Схема гидромеханической коробки передач

1, 6, 7, 9, 10, 11, 13 – шестерни; 2, 3, 17 – фрикционы; 4 – муфта; 5, 12, 19 – ведомый, промежуточный и ведущий валы; 8 – регулятор; 14, 15 – насосы; 16 – коленчатый вал; 18 – гидротрансформатор

Гидромеханическая коробка передач включает ведущий 19, ведомый 5 и промежуточный 12 валы с шестернями, многодисковые фрикционные сцепления 2, 3, 17 (фрикционы) и зубчатую муфту 4 с приводом. К системе управления относятся передний 15 и задний 14 гидронасосы и центробежный регулятор 8, который воздействует на фрикционы 2, 3, 17, обеспечивающие переключение передач.

В нейтральном положении все фрикционы выключены, и при работающем двигателе крутящий момент на вторичный вал 5 не передается. На I (понижающей) передаче системой управления автоматически включается фрикцион 2. При этом ведущая шестерня 1, свободно установленная на ведущем валу 19 коробки передач, блокируется валом, а зубчатая муфта 4 устанавливается вручную в положение переднего хода с помощью дистанционной системы управления. Крутящий момент на I передаче от гидротрансформатора передается через фрикцион 2, шестерни 1, 13, 11, 10 и зубчатую муфту 4 на ведомый вал 5 коробки передач.

При разгоне на I передаче, когда гидротрансформатор автоматически осуществляет заданный диапазон регулирования крутящего момента, скорость возрастает до оптимального значения для переключения на II передачу. В этом случае центробежный регулятор 8 дает сигнал на включение фрикциона 3 и отключение фрикциона 2.

Автоматическая система управления обеспечивает включение II (прямой) передачи, при этом крутящий момент от первичного вала 19 коробки передач передается через фрикцион 3 непосредственно на вторичный вал, и скорость автомобиля возрастает до значения, определяемого диапазоном регулирования гидротрансформатором.

Гидромеханическая коробка передач на автомобилях

На рисунке 4 представлена двухступенчатая гидромеханическая коробка передач легкового автомобиля. Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управления с кнопочным переключением передач. Кнопки соответственно означают: нейтральное положение, задний ход, I передача и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

автомобильная гидромеханическая коробка передач

Рисунок 4 – Гидромеханическая коробка передач легкового автомобиля

1 – гидротрансформатор; 2, 4 – тормозные механизмы; 3 – фрикцион; 5, 6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной I передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на II передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движение автомобиля задним ходом включается только тормозной механизм 4.

Другие статьи по коробкам передач

  • Коробка передач — назначение и типы
  • Двухвальные коробки передач ВАЗ и АЗЛК
  • Трехвальные коробки — применение и схема работы
  • Трехвальная коробка передач ВАЗ — конструкция
  • Коробка передач грузовых ГАЗ
  • Коробка передач легковых ГАЗ
  • Коробка передач грузовых автомобилей ЗИЛ
  • Коробка передач грузовых МАЗ
  • Многовальные коробки передач

Понравилась статья? Поделить с друзьями:
  • Голограмма на лобовое стекло автомобиля
  • Гм узбекистан цена на автомобили 2023
  • Головы самогона в бак автомобиля
  • Гм узбекистан цена на автомобили 2022
  • Глянцевый лак для автомобиля в баллончиках