Vnt что это в автомобиле

• Все чаще перед фирмами изготовителями встает задача оптимизация мощности турбоагрегатов. Поэтому компания Garrett® разработала VNT™ турбокомпрессор, который в процессе работы меняет диаметр входного отверстия турбодвигателя при изменении скорости выхлопных газов. Если обороты двигателя и скорость потока выхлопных газов не велики, система VNT сужает входное отверстие турбокамеры, тем самым увеличивая скорость газов и давление в турбине. При высоких оборотах двигателя и большой скорости потока газа система VNT увеличит площадь входного отверстия, удерживая величину наддува турбодвигателя на необходимом уровне, защищая ротор турбины от превышения скорости вращения.

• Фактором для изменения диаметра входного отверстия может выступать либо величина давления в турбокамере, либо система управления двигателем. В первом случае используется клапан давления, а во втором – вакуумный клапан. Модели турбокомпрессора VNT Multivane применяют для этого многолопастную систему, которая может поворачиваться по отношению к оси турбинного колеса.

• Какие преимущества дает система VNT™ и AVNT™. Прежде всего, за счет эффективной регулировки давления в турбине при различных оборотах и одинаковом уровне наддува вырабатывается больше мощности. На низких оборотах турбины с технологией VNT и AVNT, используя оптимизированное управление впрыска топлива, достигают большей величины вращательного момента.

• Достигая более низкого давления на выходе двигателя, улучшается степень расхода топлива за счет уменьшения потерь насоса. Технология выбора эффективного уровня наддува и уменьшенный расход ведут к уменьшению токсичных выбросов выхлопных газов.

• Предложенное изменение угла наклона лопастей, более плавно регулируют величину давления турбодвигателя и объем наддува, что дает возможность эффективно использовать торможение двигателем.

Взято с «AUTO»

Подробности

Турбокомпрессор с изменяемым соплом турбины (VNT), часто называемый турбокомпрессором с изменяемой геометрией (VGT), предполагает применение сложной инновационной технологии, разработанной для оптимизации производительности турбокомпрессора и общего и КПД двигателя. Турбокомпрессоры с такой технологией обладают рядом преимуществ, которые способствуют улучшению подачи мощности, уменьшению задержки турбонаддува и повышению топливной экономичности.

Базовой идеей турбокомпрессора с VNT является возможность регулировки угла наклона лопаток (сопел) турбины, которые управляют потоком выхлопных газов, направляемых на рабочее колесо турбины. В отличие от традиционных турбокомпрессоров с фиксированной геометрией, турбокомпрессоры VNT могут изменять свою геометрию в зависимости от условий работы двигателя. Такая адаптивность позволяет им находить оптимальный режим работы при низких и высоких оборотах двигателя.

Вот как работает турбокомпрессор с изменяемой геометрией:

Низкие обороты двигателя: при низких оборотах двигателя лопатки турбины регулируются таким образом, чтобы создать узкий проход для выхлопных газов. Это ускоряет выхлопные газы и точно направляет их на турбинное колесо. Результатом является быстрое включение турбонагнетателя, сводящее к минимуму задержку турбонаддува и обеспечивающее немедленный наддув двигателя.

Высокие обороты двигателя: по мере увеличения оборотов двигателя лопатки турбины регулируются таким образом, чтобы шире открывать проход. Это позволяет большему объему выхлопных газов поступать на рабочее колесо турбины, создавая более высокое давление наддува. Повышенное давление наддува повышает выходную мощность двигателя без ущерба для топливной экономичности.

Преимущества турбокомпрессора VNT:

Уменьшенная задержка турбонаддува: возможность оптимизировать геометрию турбины в зависимости от условий работы двигателя значительно сокращает задержку турбонаддува. Это означает, что двигатель быстро реагирует на нажатие дроссельной заслонки, обеспечивая мгновенное ускорение и более приятные ощущения от вождения.

Повышенная топливная экономичность: благодаря точному регулированию потока выхлопных газов на турбинное колесо турбокомпрессор VNT помогает повысить эффективность двигателя. Двигатель может работать более эффективно в более широком диапазоне скоростей и нагрузок, что приводит к лучшей экономии топлива.

Улучшенная подача мощности: технология VNT обеспечивает точный баланс между низким крутящим моментом и высокой мощностью. Это приводит к более широкому диапазону мощности, обеспечивая высокую производительность при различных оборотах двигателя.

Контроль выбросов: турбокомпрессоры VNT способствуют снижению выбросов за счет оптимизации эффективности сгорания. Это особенно важно для современных транспортных средств, отвечающих строгим стандартам выбросов.

Адаптивность: автомобили, оснащенные турбонагнетателями VNT, хорошо работают в различных условиях вождения, от городского движения до движения по шоссе, благодаря их способности приспосабливаться к различным нагрузкам на двигатель и скоростям.

Таким образом, регулируемая геометрия турбины (VNT) является важной технологией в современном автомобилестроении. Адаптивный дизайн турбокомпрессоров с ее применением повышает как производительность, так и экономичность, что делает его неотъемлемым компонентом для достижения баланса между мощностью и экономией топлива в современных автомобилях.

У вас нет прав, чтобы отправлять комментарии

From Wikipedia, the free encyclopedia

Volvo FM diesel engine with Variable Geometry Turbo

Variable-geometry turbochargers (VGTs), occasionally known as variable-nozzle turbines (VNTs), are a type of turbochargers, usually designed to allow the effective aspect ratio (A/R ratio) of the turbocharger to be altered as conditions change. This is done with the use of adjustable vanes located inside the turbine housing between the inlet and turbine, these vanes affect flow of gases towards the turbine. The benefit of the VGT is that the optimum aspect ratio at low engine speeds is very different from that at high engine speeds.

If the aspect ratio is too large, the turbo will fail to create boost at low speeds; if the aspect ratio is too small, the turbo will choke the engine at high speeds, leading to high exhaust manifold pressures, high pumping losses, and ultimately lower power output. By altering the geometry of the turbine housing as the engine accelerates, the turbo’s aspect ratio can be maintained at its optimum. Because of this, VGTs have a minimal amount of lag, a low boost threshold, and high efficiency at higher engine speeds.

  • A cut open VGT turbocharger (VW Golf, Diesel)

    A cut open VGT turbocharger (VW Golf, Diesel)

  • Exhaust side with variable-geometry guide vanes

    Exhaust side with variable-geometry guide vanes

  • charge air side with compressor wheel

    charge air side with compressor wheel

  • Turbo shaft storage

    Turbo shaft storage

  • Turbo shaft storage

    Turbo shaft storage

History[edit]

The rotating-vane VGT was first developed under Garrett and patented in 1953.[1]

One of the first production cars to use these turbochargers was the 1988 Honda Legend; it used a water-cooled VGT installed on its 2.0-litre V6 engine.

The limited-production 1989 Shelby CSX-VNT, with only 500 examples produced, was equipped with a 2.2-litre Chrysler K engine with a Garrett turbo called the VNT-25 (because it used the same compressor and shaft as the fixed-geometry Garrett T-25).

In 1991, Fiat incorporated a VGT into the Croma’s direct-injected turbodiesel.[2]

The Peugeot 405 T16, launched in 1992, used a Garrett VAT25 variable-geometry turbocharger on its 2.0-litre 16-valve engine.

The 2007 Porsche 911 Turbo has twin variable-geometry turbochargers on its 3.6-litre horizontally-opposed six-cylinder gasoline engine.

In 2007, Acura introduced the RDX with Variable Geometry Turbocharger following a (VFT) design.

The 2015 Koenigsegg One:1 (named after its power-to-weight ratio of 1:1) uses twin variable-geometry turbochargers on its 5.0-litre V8 engine, allowing it to produce 1361 horsepower.

Common designs[edit]

The most common implementations of VGTs are Variable-Nozzle Turbines (VNT), Sliding Wall Turbines, and Variable Flow Turbines (VFT).

Variable-Nozzle Turbines are common in light-duty engines (passenger cars, race cars, and light commercial vehicles), the turbine’s vanes rotate in unison, relative to its hub, to vary its pitch and cross-sectional area. VNTs offer higher flow rates and higher peak efficiency compared to other variable geometry designs.[3]

Sliding Wall Turbines are commonly found in heavy-duty engines, the vanes do not rotate, but instead, their effective width is changed. This is usually done by moving the turbine along its axis, partially retracting the vanes within the housing. Alternatively, a partition within the housing may slide back and forth. The area between the edges of the vanes changes, leading to a variable-aspect-ratio system with fewer moving parts.[4]

Variable Flow Turbines are another simplified version of a VGT when compared to a VNT. This design uses a two-volute turbine housing with a blend gate located in the neck. The gate can vary the flow between the scrolls to average the optimal A/R ratio. In low flow conditions exhaust gas is routed through the primary volute and under peak flow it is directed through both the primary and secondary. This design has a lower flow rate compared to VNT types so a wastegate may be incorporated with this design.[5]

VGTs may be controlled by a membrane vacuum actuator, electric servo, 3-phase electric actuation, hydraulic actuator, or pneumatic actuator using air brake pressure.

Unlike fixed-geometry turbines, VGTs do not require a wastegate.[6] Although VGTs do not require a wastegate, some applications requiring a high mass air flow ratio will benefit from an additional wastegate most commonly found in high performance spark ignition engines.[7] This is in contrast to diesel engines.

  • Variable Geometry Nozzle Turbine (VNT)

    Variable Geometry Nozzle Turbine (VNT)

  • Sliding Wall VGT

    Sliding Wall VGT

Use[edit]

VGTs tend to be much more common on diesel engines, as lower exhaust temperatures mean they are less prone to failure. Early gasoline-engine VGTs required significant pre-charge cooling to extend the turbocharger life to reasonable levels, but advances in technology have improved their resistance to high-temperature gasoline exhaust, and they have started to appear increasingly in gasoline-engine cars.[1]

Typically, VGTs are only found in OEM applications due to the level of coordination required to keep the vanes in the most optimal position for whatever state the engine is in. However, there are aftermarket VGT control units available, and some high-end aftermarket engine management systems can control VGTs as well.

In trucks, VGTs are also used to control the ratio of exhaust recirculated back to the engine inlet (they can be controlled to selectively increase the exhaust manifold pressure until it exceeds the inlet manifold pressure, which promotes exhaust gas recirculation). Although excessive engine backpressure is detrimental to overall fuel efficiency, ensuring a sufficient EGR rate even during transient events (such as gear changes) can be sufficient to reduce nitrogen oxide emissions down to that required by emissions legislation (e.g., Euro 5 for Europe and EPA 10 for the USA).

Another use for sliding-vane turbochargers is as a downstream exhaust brake, so that an extra exhaust throttle valve is not needed. The mechanism can also be deliberately modified to reduce the turbine efficiency in a pre-defined position. This mode can be selected to sustain a raised exhaust temperature to promote «light-off» and «regeneration» of a diesel particulate filter (this involves heating the carbon particles stuck in the filter until they oxidize away in a semi-self-sustaining reaction — rather like the self-cleaning process some ovens offer). Actuation of a VGT for EGR flow control, or to implement braking or regeneration modes in general, requires hydraulic actuators or electric servos.

VGTs offer improved transient response over conventual fixed geometry turbochargers. This makes VGTs ideal for use in vehicles where power demand is very dynamic. In situations where engine load is constant like in stationary generators, fixed geometry turbochargers can provide higher efficiency over VGTs.[8] This is due to the added exhaust resistance created from the tolerances of the moving parts within a VGT.

Manufacturers[edit]

Several companies manufacture and supply rotating-vane variable-geometry turbochargers, including Garrett, BorgWarner, and Mitsubishi Heavy Industries. This design is mostly limited to small engines and light-duty applications (passenger cars, race cars and light commercial vehicles).

The main supplier of sliding-vane VGTs is Holset Engineering.[7]

References[edit]

  1. ^ a b [1], «Turbosupercharger», issued 1953-06-08
  2. ^ «Turbo Pioneer». honeywell.com. Archived from the original on 2012-05-04. Retrieved 2014-01-22.
  3. ^ Tang, Huayin; Pennycott, Andrew; Akehurst, Sam; Brace, Chris J (2014-10-06). «A review of the application of variable geometry turbines to the downsized gasoline engine». International Journal of Engine Research. 16 (6): 810–825. doi:10.1177/1468087414552289. ISSN 1468-0874.
  4. ^ Khac, Hoang Nguyen (2017-11-20). «Design of diesel engine’s optimal control maps for high efficiency and emission reduction». S2CID 67274667.
  5. ^ Ishihara, Hiromitsu; Adachi, Kazunari; Kono, Shinji (2002-07-09). «Development of VFT Part 2». SAE Technical Paper Series. Vol. 1. doi:10.4271/2002-01-2165.
  6. ^ Halderman, James D. (2012). Fuel and Emissions Control Systems (3rd ed.). Prentice Hall. p. 69. ISBN 978-0-13-254292-0.
  7. ^ a b «My Holset Turbo | Variable Geometry Turbos». www.myholsetturbo.com. Retrieved 2020-02-03.
  8. ^ Gabriel, Holger; Jacob, Stefan; Münkel, Uwe; Rodenhäuser, Helmut; Schmalzl, Hans-Peter (February 2007). «The turbocharger with variable turbine geometry for gasoline engines». MTZ Worldwide. 68 (2): 7–10. doi:10.1007/bf03226804. ISSN 2192-9114.

External links[edit]

  • How does Variable Turbine Geometry Work?
  • Variable Turbine Geometry (VTG) explanation with pictures
  • Cummins Turbochargers & Air Handling

Система турбонаддува – эффективный метод усиления мощности двигателя автомобиля без увеличения объема цилиндров. В этой статье мы расскажем о том, что такое турбонаддув, его устройство и принцип работы.

Особенности конструкции турбонаддува

Система турбонаддува работает на принципе утилизации отработавших газов, энергия которых используется для повышения мощности и производительности двигателя.

При стандартной конструкции мотора энергия для движения вырабатывается за счет сгорания топливной смеси, при котором образуются отработанные газы, которые выводятся через выхлопную систему. Система турбонаддува же позволяет использовать отработанные газы для увеличения мощности двигателя, дополнительно уменьшая токсичность выхлопа и обеспечивая максимально полное сгорание горючей смеси. Для работы такой системы используется турбина, на одном валу с которой находится компрессор, который искусственным образом нагнетает давление в цилиндрах, увеличивает объем воздушно-топливной смеси внутри цилиндров, в следствие чего вырабатывается большее количество энергии.

Технология турбонаддува позволяет сделать мотор автомобиля более мощным (увеличение мощности до 45%) при тех же габаритах и без повышения оборотов, снизить объем потребления топлива и улучшить крутящий момент двигателя.

При всех очевидных плюсах использования турбонаддува, эта система имеет свои недостатки.

Минусы использования турбонаддува

Одна из отрицательных особенностей работы системы турбонаддува заключается в появлении эффекта «турбоямы», при котором для увеличения давления в наддуве требуется некоторое время. Обычно это происходит при резком нажатии на педаль газа. Проблема «турбоямы» решается установкой дополнительного турбокомпрессора, который будет работать параллельно или последовательно с основным, или использованием комбинированного наддува.

Второй минус, который вытекает из первого, – эффект «турбоподхвата», когда в результате «турбоямы» резко возрастает давление в наддуве.

Виды систем турбонаддува

Эффективность работы системы турбонаддува во многом определяется качеством работы установленной турбины.

  • VNT турбина, или турбина с изменяемой геометрией, чаще всего устанавливается на автомобили с дизельным мотором. Установка VNT турбины позволяет оптимизировать движение отработанных газов и устранить неприятные эффекты «турбоямы» и «турбоподхвата».
  • Турбонаддув с двумя параллельными турбокомпрессорами – как правило используется для двигателей V-типа.
  • Комбинированный наддув – система, при которой совместно используются турбонаддув и механически наддув. На низких оборотах работает механический нагнетатель, а на высоких – турбокомпрессор.

Моторное масло, а также смазывающие жидкости для турбонаддува Вы всегда можете найти в сети магазинов IXORA. Наши сотрудники с удовольствием помогут Вам сделать правильный выбор!

 

Моторные масла General Motors
Производитель Номер детали Название детали
Opel 1942003 Масло моторное Opel Genuine Gm Motor Oil, 5W-30, синтетическое, 5L
Opel 1942000 Масло моторное Opel Genuine Gm Motor Oil, 5W-30, синтетическое, 1L
General Motors 1942002 Масло моторное General Motors Dexos2 SM Synthetic EU, 5W-30, синтетическое, 4L
General Motors 93744588 Масло моторное General Motors GM Gasoline SAE KR, 5W-30, синтетическое, 4L
General Motors 93743721 Масло моторное General Motors GM Diesel SAE KR, 5W-40, синтетическое, 6L
Opel 1942046 Масло моторное Opel Genuine Gm Motor Oil, 10W-40, полусинтетическое, 5L
Opel 1942043 Масло моторное Opel Genuine Gm Motor Oil, 10W-40, полусинтетическое, 1L
CASTROL 157E6A Масло моторное Castrol edge 0w-30 a3/b4 синтетическое, 1 л
CASTROL 156EB3 Масло моторное Castrol magnatec 10w-40 r полусинтетическое, 1 л
CASTROL 156E3E Масло моторное Castrol edge 0w-30 a5/b5 синтетическое, 1 л

Полезная информация:

  • Масла для двигателей автомобилей. Классификация
  • Масла для дизельных двигателей
  • Выбираем синтетическое моторное масло

Получить профессиональную консультацию при подборе товара можно, позвонив по телефону 8 800 555-43-85 (звонок по России бесплатный).

Турбина с изменяемой геометрией

Содержание:

  • Принцип работы турбины
  • Преимущества турбины
  • Регулировка турбины
  • Чистка турбины
  • Как и где отремонтировать

Устройство и принцип работы турбины с изменяемой геометрией

Турбокомпрессор используется для увеличения мощности двигателя, которая напрямую зависит от объема воздуха и топлива, подаваемого в цилиндр. Ведущими частями любого турбокомпрессора являются турбина и насос, которые соединены между собой жесткой осью. Турбина двигателя с изменяемой геометрией необходима для образования оптимальной мощности двигателя, имеет свойство изменять сечение турбинных колес в зависимости от общей нагрузки. Если двигатель работает на низких оборотах, то турбина может увеличить скорость отвода выхлопных газов. Это позволяет турбине вращаться быстрее, при этом количество топлива остается небольшим.

турбина с изменяемой геометрией Протурбо   vnt турбина Протурбо

Как устроена турбина и как она работает

Турбина с измененной геометрией отличается от классических турбокомпрессоров тем, что имеет в своей конструкции кольцо и специальные лопасти с аэродинамической формой, которая способствует увеличению эффективности наддува. В автомобилях с двигателями небольшой мощности сечение регулируется посредством изменения ориентации этих лопастей. В двигателях большой мощности лопасти не вращаются, а покрываются специальным кожухом или перемещаются вдоль оси камеры.

Особенностью VNT турбины являются поворотные лопасти, механизм управления и вакуумный привод. Принцип работы основывается на регулировке потока отработавших газов, которые направляются на колесо турбины. Точная регулировка позволяет настроить проходное сечение для потока газов под режим работы двигателя. Если автомобиль двигается на небольшой скорости, то и турбина крутится медленнее, но при этом лепестки устанавливаются в такое положение, чтобы расстояние между ними было минимальным. Газу в малом объеме сложно преодолеть небольшое отверстие, поэтому он будет передвигаться с большей скоростью, за счет чего обороты турбины увеличиваются, увеличивая при этом давление наддува.

При помощи данных лопастей можно существенно увеличить скорость вращения турбины, не меняя объемы поступающих газов. На большой скорости компрессор раздвигает лопасти – это обеспечивает поддержание безопасного давления внутри системы и исключает перегревы. Принцип изменяемой геометрии позволяет не использовать перепускной клапан, так как весь объём выхлопных газов выходит через горячую часть крыльчатки. Изменение положения поворотных предотвращает избыточный наддув.

Преимущества турбины с изменяемой геометрией

  • Автомобили с такими турбинами развивают большую скорость с самых низких оборотов.
  • Существенно снижается объем необходимого топлива, а также количество вредных выбросов в атмосферу.
  • Улучшается прохождение газов через турбину из-за отсутствия клапана Wastegate и уменьшения количества разнонаправленных потоков газа.
  • Улучшается эластичность двигателя.

Возможные неисправности

Турбокомпрессор с изменяемой геометрией представляет собой сложный механизм, поэтому он больше подвержен различным поломкам. Однако, такие турбины сталкиваются лишь с несколькими проблемами:

  • Подклинивание лопастей в движении. Такая ситуация может сложиться из-за сильного износа трущихся пар и образовании нагара. Масляные, а также углеродистые отложения мешают плавному движению регулировочного кольца.
  • Заклинивание лопаток в одном положении. Это может происходить по причине критического нагарообразования, когда силы вакуума не хватает для движения регулировочного кольца.
  • Поломки вакуумного привода поворотных лопастей или клапана управления давлением.

Симптомами поломок считаются подергивание при разгонах, потеря мощности двигателя, увеличение расхода топлива, а также срабатывание индикатора на приборной панели Check Engine.

Как настроить и отрегулировать турбину

Правильная регулировка турбины с изменяемой геометрией крайне важна для эффективной работы, и для того, чтобы предотвратить быстрый износ деталей и снизить потребление топлива. Если отрегулировать турбину неправильно, то в дальнейшем это повлияет на работу всего автомобиля и удобство его управления.

Любой современный автовладелец немного разбирается в устройстве своего автомобиля и даже может устранить определенные небольшие поломки. Однако, чтобы сделать серьезный ремонт автомобиля, необходим специальный инструмент и оборудование, которого у обычного потребителя может и не быть.

Поэтому, если вы хотите, чтобы работа турбины была эффективной и качественной – обращайтесь за помощью к специалистам, которые правильно настроят механизм и расскажут, как лучше всего за ним ухаживать. Также, не стоит забывать о своевременных диагностиках и профилактике.

Как почистить турбину своими руками

Устройство турбины постоянно сталкивается с непрерывной нагрузкой, подвергается воздействиям продуктов горения масла и топлива, поэтому нуждается в регулярной чистке для профилактики различных поломок, которые могут быть с этим связаны. Зачастую, достаточно обработать турбину специальным средством и прогнать его через механизм для качественной очистки. Однако, иногда придется приложить побольше усилий для того, чтобы удалить все загрязнения с устройства. Также стоит помнить о том, что турбина не требует частой чистки, поэтому если она сильно загрязняется за короткое время, значит есть неполадки в ее работе или настройке.

Причинами сильных загрязнений могут выступать:

  • Увеличение нормы давления газов.
  • Износ лопастей турбины.
  • Превышение необходимого срока эксплуатации поршневого отсека.
  • Засора сапуна.
  • Износ прокладок.

Именно поэтому каждый автовладелец должен понимать, что сделать качественную чистку самостоятельно возможно, но далеко не всегда результат таких действий положительно влияет на работу механизма, а в некоторых случаях может и вовсе ухудшать ситуацию.

Отсутствие надлежащего опыта, проверенных чистящих средств, специальных инструментов – все это может негативно сказаться на результате вашей чистки, поэтому лучше всего обращаться в специализированные центры, где такой работой занимаются профессионалы.

турбокомпрессор с изменяемой геометрией

Как сделать ремонт турбины?

Ремонт турбин гораздо проще предупредить посредством регулярного обслуживания и диагностики, чем потом пытаться исправить ситуацию самостоятельно. Процесс осложняется еще и тем, что многие автовладельцы боятся высоких цен на профессиональные услуги, забывая о том, что самостоятельное проведение ремонта отнимает также немало денег и времени. К тому же, не все получается с первого раза, и затраты на самостоятельный ремонт могут быть достаточно внушительными.

Поэтому мы настоятельно рекомендуем автовладельцам без опыта, знаний, навыков, а, самое главное, необходимого оборудования, не пытаться ремонтировать сложное устройство турбины самостоятельно, поскольку это может привести к еще более серьезным поломкам, устранить которые не сможет даже опытный специалист. При первых признаках поломки обращайтесь в наш сервисный центр, где наши мастера помогут вам восстановить картридж турбокомпрессора, а также устранить другие неисправности быстро и качественно.

вид турбины с изменяемой геометрией

Принцип работы VNT-турбины

Рассматривая принцип работы турбонаддува, мы затронули проблемы, ограничивающие эффективность газовых турбокомпрессоров. Турбина с изменяемой геометрией позволяет расширить зону действия турбонаддува и сделать двигатель более приемистым. Поговорим не только об устройстве системы, но и о симптомах неисправности клапана управления, чистке и регулировке VNT-турбонагнетателей.

Устройство VNT-турбины

На рисунке изображена турбина с изменяемой геометрией, устанавливаемая на автомобили Volkswagen, Skoda. Общее устройство турбокомпрессора и принцип нагнетания дополнительного воздуха не отличается от обычных турбокомпрессоров. Основная особенность в поворотных лопатках, механизме управления и вакуумном приводе.

Принцип работы

Поворотные лопатки вращаются на осях, установленных в опорном кольце. К оси каждой лопатки прикреплены тяги управления, которые при монтаже входят в зацепление с регулировочным кольцом. Направляющий рычаг соединяет регулировочное кольцо с рычагом тяги управления и осью вакуумного привода поворотных лопаток.

При изменении положения оси вакуумного привода регулировочное кольцо проворачивается на определенный угол. За счет этого происходит поворот оси лопаток в опорном кольце. Они синхронно меняют свое положение, изменяя тем самым сечение для потока выхлопных газов.

Принцип работы турбины с изменяемой геометрией основывается на регулировании потока отработавших газов, направляемых на колесо турбины. Регулировка позволяет подстраивать проходное сечение для потока отработавших газов под режим работы двигателя.

Как изменяется давление наддува?

Когда мы рассматривали принцип работы системы изменяемой геометрии впускного коллектора, то говорили о зависимости скорости потока газов от проходного сечения канала. При одинаковом давлении скорость потока газа будет выше в канале с суженым сечением.

Для быстрого выхода турбины в зону эффективной работы на низких оборотах двигателя необходимо высокое давление наддува. В таком режиме работы лопатки уменьшают сечение канала, по которому отработанные газы движутся к крыльчатке турбины. В итоге повышается давление наддува.

В зоне высоких оборотов двигателя увеличивается объем выхлопных газов. Небольшое сечение канал приведет к чрезмерному подпору выхлопных газов, что приведет к плохому наполнению цилиндров свежим зарядом ТПВС. Поэтому с повышением оборотов двигателя лопатки меняют свое положение, увеличивая сечение для прохождения выхлопных газов.

Принцип работы изменяемой геометрии позволяет отказаться от перепускного клапана (wastegate). Через крыльчатку «горячей» части проходит весь поток выхлопных газов. Предотвращение избыточного наддува осуществляется изменением положения поворотных лопаток.

Система в разрезе

  1. Лопатки расположены перпендикулярно радиальным линиям, что равняется узкому сечению для потока выхлопных газов. Обеспечивается быстрое нарастание наддува и прибавка крутящего момента в зоне низких оборотов двигателя.
  2. Ступенчатое расположение лопаток – большое сечение для потока выхлопных газов. Этот же режим используется в качестве аварийного, когда система самодиагностики регистрирует некорректную работу системы, отсутствует питание на электромагнитном клапане.

Управление геометрией

Изменение геометрии турбины осуществляется блоком управления двигателем. Принцип работы рассмотренной выше системы предполагает наличие электромагнитного клапана управления наддувом. Управляется клапан ШИМ-сигналом. Изменяя скважность сигнала, ЭБУ двигателя устанавливает необходимое разряжение в вакуумной среде привода поворотных лопаток. При таком управлении ЭБУ может плавно и точно управлять регулировочным кольцом, что обеспечивает эффективное сгорание ТПВС на всех режимах работы двигателя.

Когда электромагнитный клапан обесточен, в вакуумной среде атмосферное давление, лопатки установлены в ступенчатом положении. Для плавной регулировки давления наддува ЭБУ постоянно опрашивает датчиковую аппаратуру двигателя.

Принципиальное отличие

Автомобильные газовые турбины всех типов имеют 3 режима работы:

  • выход в рабочую зону. Раскручивающийся вал турбины создает сопротивление потоку выхлопных газов, что снижает наполняемость цилиндров и, как следствие, КПД двигателя. Именно с режимом раскручивания турбинного колеса водители связывают явление «турбоямы»;
  • зона эффективной работы. При достижении рабочей зоны скорость вращения компрессорного колеса позволяет нагнетать в цилиндры большее количество воздуха, что ощущается прибавкой в крутящем моменте;
  • зона оверспина (от англ. overspinning – избыточное вращение). Устройство турбокомпрессора предполагает зоны эффективности. Конструкция двигателя также рассчитывается на определенную величину наддува. Если скорость потока выхлопных газов превысит зону оптимальной эффективности и расчетную величину наддува, дальнейшее использование турбонаддува только снизит КПД двигателя. Также превышение расчетной скорости вращения крыльчатки ведет к срыву потока воздуха. Поэтому устройство большинства турбин предполагает наличие клапана Последний на определенных оборотах двигателя пускает поток выхлопных газов в обход турбинного колеса.

Устройство турбины с фиксированной геометрией – это всегда компромисс между скоростью выхода в зону эффективности, величиной наддува и границей пиковой мощности. На эти параметры влияет диаметр каналов для движения газов, соотношение площади индюсера и эксдюсера, Area/Radius хаузинга, конструкция клапана wastegate, blow-off. Но из-за того, что характеристики турбины закладываются еще на стадии проектирования, ее рабочая зона довольно узкая.

Преимущества

  • Активное изменение сечения канала «горячей» части турбины позволяет расширить зону ее эффективной работы. Авто с изменяемой геометрией турбонаддува могут выдавать большую мощность уже с самих низких оборотов.
  • Уменьшенный подпор выходу выхлопных газов на высоких оборотах. Из-за отсутствующего клапана wastegate в «горячей» части уменьшается количество разнонаправленных потоков газов, что улучшает прохождение газов через турбину.
  • Улучшение эластичности двигателя.
  • Снижение расхода топлива и количества вредных выбросов в атмосферу.

Возможные неисправности

Усложнение конструкции турбины неминуемо приводит к увеличению риска поломки. Но в случае с работой изменяемой геометрии ситуация не так плоха, как может показаться. У механизма лишь несколько основных проблем:

  • движение лопаток с подклиниванием. Происходит из-за критического износа трущихся пар и при нагарообразовании. Углеродистые и масляные отложения препятствуют плавному перемещению регулировочного кольца;
  • заклинивание лопаток в одном из положений. Из-за критического нагарообразования силы вакуума недостаточно для перемещения регулировочного кольца;
  • неисправность вакуумного привода поворотных лопаток, клапана управления давлением турбонаддува.

Среди основных симптомов поломки – подергивания при разгоне, потеря мощности двигателя, увеличение расхода топлива и появление на панели приборов индикации Check Engine.

Понравилась статья? Поделить с друзьями:
  • Volkswagen golf gti автомобили volkswagen
  • Volkswagen bora classic edition китай автомобили volkswagen
  • Volga siber автомобили горьковского автомобильного завода
  • Vogue motors автомобили с пробегом в наличии отзывы
  • Vitesse модели автомобилей официальный сайт